[1] 李志国,周晓龙,胡日茗,等.复相增强AgMeO电触头材料的研究进展[J].材料导报,2018,32(s1):81-85. LI Z G, ZHOU X L, HU RM, et al. A research progress of composite-reinforced silver-based electrical contact materials[J]. Materials Reports, 2018, 32(s1): 81-85(in Chinese). [2] JEANNOT D, PINARD J, RAMONI P, et al. Physical and chemical properties of metal oxide additions to Ag[J]. IEEE Transactions on Components Packaging & Manufacturing Technology Part A, 1994, 17(1): 17-23. [3] JEANNOT D, PINARD J, RAMONI P, et al. The effects of metal oxide additions or dopants on the electrical performance of AgSnO2 contact materials[J]. Proceedings of IEEE Holm Conference on Electrical Contacts, 1993: 51-59. [4] FRANCISCO H A, MYERS M. Optimization of silver tin oxide chemistry to enhance electrical performance in a.c. application[C]. //Electrical Contacts-1998. Proceedings of the Forty-Fourth IEEE Holm Conference on Electrical Contacts (Cat. No.98CB36238). October 26-28, 1998, Arlington, VA, USA. IEEE,1998: 193-201. [5] 陈宏燕,谢 明,王 锦,等.银氧化锡电触头材料研究现状及发展趋势[J].贵金属,2011,32(2):77-81. CHEN H Y, XIE M, WANG J, et al. The advances and developmental trend of Ag/SnO2 electrical contact material[J]. Precious Mentals, 2011, 32(2): 77-81(in Chinese). [6] 康慧玲,王景芹,张 颖.Sr-F共掺杂对AgSnO2电性能影响的仿真分析[J].贵金属,2018,39(2):34-38. KANG H L, WANG J Q, ZHANG Y. Simulation analysis of the effect of Sr-F co-doping on the electrical properties of AgSnO2 [J]. Precious Mentals, 2018, 39(2): 34-38(in Chinese). [7] 张 颖,王景芹,康慧玲.稀土元素掺杂AgSnO2的电子结构与弹性常数研究[J].贵金属,2018,39(1):30-36. ZANG Y, WANG J Q, KANG H L. Study on elastic constant and electronic structure of AgSnO2 doped with rare earth elements[J]. Precious Mentals,2018,39(1):30-36(in Chinese). [8] MUTO Y, MNAKATO S, OKA N, et al. High-rate deposition of Ta-doped SnO2 films by reactive magnetron sputtering using a Sn-Ta metal-sintered target [J]. Thin Solid Films, 2012, 520(10): 3746-3750. [9] NGOC M N, MANH Q L, MINH H N, et al. Synthesis of tantalum-doped tin oxide thin films by magnetron sputtering for photovoltaic applications[J]. Journal of Electronic Materials, 2017, 46(6): 3667-3673. [10] HE L, LUAN C, FENG X, et al. Effect of niobium doping on the structural, electrical and optical properties of epitaxial SnO2 films on MgF2 (110) substrates by MOCVD [J]. Journal of Alloys and Compounds, 2018, 741: 677-681. [11] 薛 天. 新型AgNiSnO2材料的制备与性能研究[D].杭州:浙江大学,2008. XUE T. The preparation and properties of a new material-AgNiSnO2[D].Hangzhou: Zhejiang University, 2008(in Chinese). [12] WANG J Q, LIU Z, CHEN L, et al. Effect of Cu F co-doping on the properties of AgSnO2 contact[J]. Materials, 2019, 12(14): 2315-. [13] WANG J Q, ZHOU L, ZHU Y C, et al. Effect of Cu, N co-doping on conductive properties of AgSnO2contact[J]. Materials Research Express, 2019, 6(10):106311-. [14] 许春辉,杨 平.Mo掺杂SnO2光电特性的第一性原理研究[J].半导体光电,2019,40(4):534-538+595. XU C H, YANG P. Study on photoelectric characteristics of Mo-doped SnO2 with first-principles[J]. Semiconductor Optoelectronics, 2019, 40(04): 534-538+595. [15] 侯清玉,乌 云,赵春旺.In-2N高共掺位向对ZnO(GGA+U)导电性能影响的研究[J].物理学报,2014,63(13):334-340. HOU Q Y, WU Y, ZHAO C W. Study on the effect of In-2N co-doping at preferential locality on the photoelectric function of ZnO (GGA+U)[J]. Acta Physica Sinica, 2014, 63(013): 334-340(in Chinese). [16] GHOSH G, ASTA M. First-principles calculations of structural energetics of Cu-TM (TM=Ti, Zr, Hf) intermetallics[J]. Acta Materialia, 2005, 53(11): 3225-3252. [17] DOLBEC R, KHAKANI M A E, SERVENTI A M, et al. Microstructure and physical properties of nanostructured tin oxide thin films grown by means of pulsed laser deposition [J]. Thin Solid Films, 2002, 419(1/2): 230-236. [18] 姜如青,欧阳剑,杨 辉,等.In、Ga掺杂SnO2的第一性原理研究[J].华南师范大学学报(自然科学版),2017,49(3):1-6. JIANG R Q, OUYANG J, YANG H, et al. First-principles investigation of SnO2 with In and Ga doped[J]. Journal of South China Normal University (Natural Science Edition), 2017, 49(3): 1-6(in Chinese). [19] 丁 超,李 卫,刘菊燕,等.Sb, S共掺杂SnO2电子结构的第一性原理分析[J].物理学报,2018,67(21):141-147. DING C, LI W, LIU J Y, et al. First principle study of electronic structure of Sb, S Co-doped SnO2[J]. Acta Physica Sinica, 2018, 67(21): 141-147(in Chinese). [20] 徐 帅,杨 平.Al-N共掺SnO2材料电子结构和光学性质[J].电子科技,2018,31(12):47-51. XU S, YANG P. Aluminum and nitrogen co-doping effects on the electrical structure and optical properties of SnO2[J]. Electronic Sci. & Tech. 2018, 31(12): 47-51(in Chinese). [21] 张富春,张志勇,张威虎,等.In2O3电子结构与光学性质的第一性原理计算[J].化学学报,2008,66(16):1863-1868. ZHANG F C, ZHANG Z Y, ZHANG W H, et al. The first-principle calculation of electronic structure and optical properties of In2O3[J]. Acta chimica sinica, 2008, 66(16): 1863-1868(in Chinese). [22] WOLDEMAR V. Lehrbuch der Kristallphysik[M].Wiesbaden: Vieweg+Teubner Verlag, 1966. [23] REUSS A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals[J]. Z Anew Math Mech, 1929(9): 49-58. [24] HILL R. The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society, 2002, 65(5): 349-354. [25] RANGANATHAN S I, OSTOJA S M. Universal elastic anisotropy index[J]. Physical Review Letters, 2008, 101(5): 055504 [26] CHEN X Q, NIU H, LI D, et al. Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9):1275-1281. [27] WU Z J, ZHAO E J, XIANG H P, et al. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles[J]. Physical Review B, 2007, 76(5): 054115. |