[1] SUN X L, SONG W C, ZANG S Q, et al. Hierarchical assembly of a homochiral triple concentric helical system in a novel 3D supramolecular metal-organic framework: synthesis, crystal structure, and SHG properties[J]. Chemical Communications (Cambridge,England), 2012, 48(15): 2113-2115. [2] WANG Y T, TANG G M, WAN W Z, et al. New homochiral ferroelectric supramolecular networks of complexes constructed by chiral S-naproxen ligand[J]. Cryst Eng Comm, 2012, 14(10): 3802-3812. [3] HE J H, ZHANG G J, XIAO D R, et al. From racemic compound to spontaneous resolution: a series of homochiral lanthanide coordination polymers constructed from presynthesized [Sb2(tart)2]2- metalloligands[J]. Journal of Molecular Structure, 2012, 1018: 131-136. [4] TRAIN C, GRUSELLEC M, VERDAGURE M. The fruitful introduction of chirality and control of absolute configurations in molecular magnets[J]. Chemical Society Reviews, 2011, 40(6): 3297-3312. [5] WEN H R, TANG Y Z, LIU C M, et al. One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties[J]. Inorganic Chemistry, 2009, 48(21): 10177-10185. [6] JIANG Z G, LU Y K, CHENG J W, et al. Two types of rare earth-organic frameworks constructed by racemic tartaric acid[J]. Journal of Solid State Chemistry, 2012, 185: 253-263. [7] WU C D, LU C Z, LU S F, et al. Synthesis, structures and properties of a series of novel left- and right-handed metal coordination double helicates with chiral channels[J]. Dalton Transactions, 2003, 3(16): 3192-3198. [8] THUSHARI S, CHA J A K, SUNG H H Y, et al. Microporous chiral metal coordination polymers: hydrothermal synthesis, channel engineering and stability of lanthanide tartrates[J]. Chemical Communications (Cambridge,England), 2005(44): 5515-5517. [9] ATHAR M, LI G H, SHI Z, et al. Hydrothermal synthesis and structural characterization of a family of lanthanide tartrates: [Ln2(C4H4O6)3(H2O)3]·1.5H2O (Ln = La, Ce, Pr, Nd, Sm) [J]. Solid State Sciences, 2008, 10(12): 1853-1859. [10] WANG Y, LIU G X, CHEN Y C, et al. Two novel lanthanum-tartrate complexes with distinctive new topologies: hydrothermal synthesis and crystal structures[J]. Inorganica Chimica Acta, 2010, 363(11): 2668-2672. [11] CHAUDHARY A, MOHAMMAD A, MOBIN S M. Recent advances in single-crystal-tosingle-crystal transformation at the discrete molecular level[J]. Crystal Growth & Design, 2017, 17(5): 2893-2910. [12] ROSI N L, EDDAOUDI M, KIM J, et al. Infinite secondary building units and forbidden catenation in metal-organic frameworks[J]. Angewandte Chemie (International Ed.in English), 2002, 41(2): 284-287. [13] HO T Y, HUANG S M, WU J Y, et al. Direct guest exchange induced single-crystal to single-crystal transformation accompanying irreversible crystal expansion in soft porous coordination polymers[J]. Crystal Growth & Design, 2015, 15(9): 4266-4271. [14] ZHANG X, VIERU V, FENG X, et al. Influence of guest exchange on the magnetization dynamics of dilanthanide single-molecule-magnet nodes within a metal-organic framework[J]. Angewandte Chemie (International Ed in English), 2015, 54(34): 9861-9865. [15] KYPRIANIDOU E J, LAZARIDES T, KAZIANNIS S, et al. Single crystal coordinating solvent exchange as a general method for the enhancement of the photoluminescence properties of lanthanide MOFs[J]. Journal of Materials Chemistry A, 2014,2(15): 5258. [16] LIU Z Y, YANG E C, LI L L, et al. A reversible SCSC transformation from a blue metamagnetic framework to a pink antiferromagnetic ordering layer exhibiting concomitant solvatochromic and solvatomagnetic effects[J]. Dalton Transactions, 2012, 41(22): 6827-6832. [17] HAN M R, ZHANG H T, WANG J N, et al. Three chiral one-dimensional lanthanide-ditoluoyl-tartrate bifunctional polymers exhibiting, luminescence and magnetic behaviors[J]. RSC Advances, 2019, 9(55): 32288-32295. [18] BRUKER. APEX2 and SAINT. Bruker AXS Inc[M]. Madison, Wisconsin, USA. 2000. [19] SHELDRICK G M. A short history of SHELX[J]. Acta Cryst, 2008, A64: 112-122. [20] SHELDRICK G M. SHELXT-Integrated space-group and crystal-structure determination[J]. Acta Crystallogr A Found Adv, 2015, 71(pt 1): 3-8. [21] SPEK A L. Single-crystal structure validation with the program PLATON[J]. Journal of Applied Crystallography, 2003, 36(1): 7-13. [22] ZHAO N, Sun F X, He H M, et al. Solvent-induced single crystal to single crystal transformation and complete metal exchange of a pyrene-based metal-organic framework[J]. Crystal Growth & Design, 2014, 14(4):1738-1743. [23] SU F, Lu L P, Feng S S, et al. Self-assembly and magnetic properties of Ni(ii)/Co(ii) coordination polymers based on 1,4-bis(imidazol-1-yl)benzene and varying biphenyltetracarboxylates[J].CrystEngComm, 2014, 16(34): 7990-7999. [24] MA X L, Wang Z X, He X, et al. 2D double-layered dibenzoyl-tartrate chiral coordination polymer containing [Mn4L2(bpp)4] tetrahedral cage[J]. Inorganic Chemistry Communications, 2018, 92: 131-135. [25] GAO Q, Wang X Q, Jacobson A J. Homochiral frameworks formed by reactions of lanthanide ions with a chiral antimony tartrate secondary building unit[J]. Inorganic Chemistry, 2011, 50(18): 9073-9082. [26] SUN J W, Li S J, Yan P F, et al. In situ recrystallization of lanthanide coordination polymers: from 1D ladder chains to 1D linear chains[J]. CrystEngComm, 2016, 18(17): 3079-3085. [27] LI Y X, Li S J, Yan P F, et al. Luminescence-colour-changing sensing of Mn2+and Ag+ ions based on a white-light-emitting lanthanide coordination polymer[J]. Chemical Communications (Cambridge, England), 2017, 53(26): 5067-5070. |