[1] CHHOWALLA M, SHIN H S, EDA G, et al.The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. [2] LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al.Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. [3] ZHANG H.Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469. [4] XU M S, LIANG T, SHI M M, et al.Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. [5] GUPTA A, SAKTHIVEL T, SEAL S.Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126. [6] DING Y, WANG Y L, NI J, et al.First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers[J]. Physica B: Condensed Matter, 2011, 406(11): 2254-2260. [7] OVCHINNIKOV D, ALLAIN A, HUANG Y S, et al.Electrical transport properties of single-layer WS2[J]. ACS Nano, 2014, 8(8): 8174-8181. [8] KANG K, XIE S, HUANG L, et al.High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660. [9] SONG J G, PARK J, LEE W, et al.Layer-controlled, wafer-scale, and conformal synthesis of tungsten disulfide nanosheets using atomic layer deposition[J]. ACS Nano, 2013, 7(12): 11333-11340. [10] CAO Q, DAI Y W, XU J, et al.Realizing stable p-type transporting in two-dimensional WS2 films[J]. ACS Applied Materials & Interfaces, 2017, 9(21): 18215-18221. [11] FAN Y, ZHOU Y Q, WANG X C, et al.Photoinduced Schottky barrier lowering in 2D monolayer WS2 photodetectors[J]. Advanced Optical Materials, 2016, 4(10): 1573-1581. [12] NAYAK P K, YEH C H, CHEN Y C, et al.Layer-dependent optical conductivity in atomic thin WS2 by reflection contrast spectroscopy[J]. ACS Applied Materials & Interfaces, 2014, 6(18): 16020-16026. [13] WU J H, ZHAI F, LU J Q, et al.Strain-tunable photogalvanic effect in phosphorene[J]. Materials Today Communications, 2020, 24: 101154. [14] KARCH J, TARASENKO S A, IVCHENKO E L, et al.Photoexcitation of valley-orbit currents in (111)-oriented silicon metal-oxide-semiconductor field-effect transistors[J]. Physical Review B, 2011, 83(12): 121312. [15] DHARA S, MELE E J, AGARWAL R.Voltage-tunable circular photogalvanic effect in silicon nanowires[J]. Science, 2015, 349(6249): 726-729. [16] ZENG X L, YU J L, CHENG S Y, et al.Temperature dependence of photogalvanic effect in GaAs/AlGaAs two-dimensional electron gas at interband and intersubband excitation[J]. Journal of Applied Physics, 2017, 121(19): 193901. [17] TIAN J, HONG S, MIOTKOWSKI I, et al.Observation of current-induced, long-lived persistent spin polarization in a topological insulator: a rechargeable spin battery[J]. Science Advances, 2017, 3(4): e1602531. [18] XIE YQ, ZHANG L, ZHU Y, et al.Photogalvanic effect in monolayer black phosphorus[J]. Nanotechnology, 2015, 26(45): 455202. [19] CHEN J Z, HU Y B, GUO H.First-principles analysis of photocurrent in graphene PN junctions[J]. Physical Review B, 2012, 85(15): 155441. [20] LUO W M, SHAO Z G, YANG M.Photogalvanic effect in nitrogen-doped monolayer MoS2 from first principles[J]. Nanoscale Research Letters, 2019, 14(1): 380. [21] LUO W M, SHAO Z G, QIN X F, et al.Photogalvanic effect in monolayer WSe2-MoS2 lateral heterojunction from first principles[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 115: 113714. [22] FAN X L, AN Y R, GUO W J.Ferromagnetism in transitional metal-doped MoS2 monolayer[J]. Nanoscale Research Letters, 2016, 11(1): 1-10. [23] LU S, LI C, ZHAO Y F, et al.Tunable redox potential of nonmetal doped monolayer MoS2: first principle calculations[J]. Applied Surface Science, 2016, 384: 360-367. [24] SALAMI N, SHOKRI A A, ELAHI S M.Tunable electronic and magnetic properties of a MoS2 monolayer with vacancies under elastic planar strain: ab initio study[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 77: 138-143. [25] 张芳,李伟,戴宪起.Cr和Mo掺杂对WS2晶体能带结构的影响[J].硅酸盐学报,2015,43(11):1573-1579. ZHANG F, LI W, DAI X Q.Effect of Cr-and Mo-doping onband structure of WS2 crystal[J]. Journal of the Chinese Ceramic Society, 2015, 43(11): 1573-1579(in Chinese). [26] 郭丽娟,胡吉松,马新国,等.二硫化钨/石墨烯异质结的界面相互作用及其肖特基调控的理论研究[J].物理学报,2019,68(9):221-229. GUO L J, HU J S, MA X G, et al.Interfacial interaction and Schottky contact of two-dimensional WS2/graphene heterostructure[J]. Acta Physica Sinica, 2019, 68(9): 221-229(in Chinese). [27] WALDRON D, TIMOSHEVSKII V, HU Y, et al.First principles modeling of tunnel magnetoresistance of Fe/MgO/Fe trilayers[J]. Physical Review Letters, 2006, 97(22): 226802. [28] GUAN H M, TANG N, XU X L, et al.Photon wavelength dependent valley photocurrent in multilayer MoS2[J]. Physical Review B, 2017, 96(24): 241304. [29] YOUNGBLOOD N, LI M.Ultrafast photocurrent measurements of a black phosphorus photodetector[J]. Applied Physics Letters, 2017, 110(5): 051102. [30] GRAHAM R, MILLER C, OH E, et al.Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors[J]. Nano Letters, 2011, 11(2): 717-722. |