人工晶体学报 ›› 2021, Vol. 50 ›› Issue (7): 1183-1199.
• 综合评述 • 下一篇
高博锋, 任梦昕, 郑大怀, 兀伟, 蔡卫, 孙军, 孔勇发, 许京军
收稿日期:
2021-05-14
出版日期:
2021-07-15
发布日期:
2021-08-16
通讯作者:
任梦昕,博士,教授。E-mail:ren_mengxin@nankai.edu.cn;孔勇发,博士,教授。E-mail:kongyf@nankai.edu.cn;许京军,博士,教授。E-mail:jjxu@nankai.edu.cn
作者简介:
高博锋(1995—),男,山东省人,博士研究生。E-mail:gao_bofeng@mail.nankai.edu.cn
基金资助:
GAO Bofeng, REN Mengxin, ZHENG Dahuai, WU Wei, CAI Wei, SUN Jun, KONG Yongfa, XU Jingjun
Received:
2021-05-14
Online:
2021-07-15
Published:
2021-08-16
摘要: 铌酸锂集压电、倍频、电光和光折变等特性于一身,被认为是非线性光学的模型晶体,已经表现出巨大的实用价值。铌酸锂在其诞生以来的近百年中,已经在国土安全、医学检测、高能物理、工业探测等领域占据着不可或缺的地位。随着微纳技术的发展,近年来铌酸锂微纳结构中新型光学效应的研究,已经成为国际上竞相争夺的前沿热点之一,相关研究对于产生新型微纳光子学器件具有重要推动作用。本文主要围绕铌酸锂的光学性质综述了其发展历史,同时介绍其在微纳光学领域的研究现状,并对其未来发展进行了展望。
中图分类号:
高博锋, 任梦昕, 郑大怀, 兀伟, 蔡卫, 孙军, 孔勇发, 许京军. 铌酸锂的耄耋之路:历史与若干进展[J]. 人工晶体学报, 2021, 50(7): 1183-1199.
GAO Bofeng, REN Mengxin, ZHENG Dahuai, WU Wei, CAI Wei, SUN Jun, KONG Yongfa, XU Jingjun. Long-Lived Lithium Niobate: History and Progress[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1183-1199.
[1] 刘思敏,郭 儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004. LIU S M, GUO R, XU J J. Photorefractive nonlinear optics and its applications [M]. Beijing: Science Press, 2004(in Chinese). [2] 孔勇发,许京军,张光寅,等.多功能光电材料:铌酸锂晶体[M].北京:科学出版社,2005. KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005(in Chinese). [3] VOLK T, WÖHLECKE M. Lithium niobate: defects, photorefraction and ferroelectric switching[M]. Berlin: Springer-Verlag Berlin Heidelberg, 2008 [4] WEIS R S, GAYLORD T K. Lithium niobate: summary of physical properties and crystal structure[J]. Applied Physics A, 1985, 37(4): 191-203. [5] KONG Y F, LIU S G, XU J J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971. [6] 孙 军,郝永鑫,张 玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964(in Chinese). [7] LU Y, ZHANG Q, WU Q, et al. Giant enhancement of THz-frequency optical nonlinearity by phonon polariton inionic crystals[J]. Nature Communications, 2021, 12: 3183. [8] POBERAJ G, HU H, SOHLER W, et al. Lithium niobate on insulator (LNOI) for micro-photonic devices[J]. Laser & Photonics Reviews, 2012, 6(4): 488-503. [9] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): 1806452. [10] LIN J T, BO F, CHENG Y, et al. Advances in on-chip photonic devices based on lithium niobate on insulator[J]. Photonics Research, 2020, 8(12): 1910-1936. [11] ZACHARIASEN W H. Untersuchungen über Die Kristallstrukturen von Sesquioxiden und Verbindungen ABO3[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1929, 51(1): 123. [12] SRINIVASAN N R. Studies on niobium and tantalum[J]. Proceedings of the Indian Academy of Sciences - Section A, 1950, 31(5): 300-316. [13] SÁNCHEZ-DENA O, FIERRO-RUIZ C D, VILLALOBOS-MENDOZA S D, et al. Lithium niobate single crystals and powders reviewed—part I[J]. Crystals, 2020, 10(11): 973. [14] MATTHIAS B T, REMEIKA J P. Ferroelectricity in the ilmenite structure[J]. Physical Review, 1949, 76(12): 1886-1887. [15] MATTHIAS B T. Ferroelectricity[J]. Science, 1951, 113(2943): 591-596. [16] 莱因斯,格拉斯.铁电体及有关材料的原理和应用[M].钟维烈,译.北京:科学出版社,1989. LINES M E, GLASS A M. Principles and applications of Ferroelectrics and related materials. Translated: Zhong W L. Beijing: Science Press, 1989. [17] OHLWILER R W. High temperature ferroelectric materials[R]. PN, 1964. [18] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113. [19] FEDULOV S A, SHAPIRO I, LADYZHENSKI P B. Application of Czochralski method for growth of LiNbO3, LiTaO3, and NaNbO3 single crystals[J]. Kristallografiya, 1965, 10(2): 268-9. [20] WARNER J, ROBERTSON D S, HULME K F. The temperature dependence of optical birefringence in lithium niobate[J]. Physics Letters, 1966, 20(2): 163-164. [21] BOYD G D, MILLER R C, NASSAU K, et al.LiNbO3: an efficient phase matchable nonlinear optical material[J]. Applied Physics Letters, 1964, 5(11): 234-236. [22] NASSAU K, LEVINSTEIN H J, LOIACONO G M. The domain structure and etching of ferroelectric lithium niobate[J]. Applied Physics Letters, 1965, 6(11): 228-229. [23] NASSAU K, LEVINSTEIN H J. Ferroelectric behavior of lithium niobate[J]. Applied Physics Letters, 1965, 7(3): 69-70. [24] WYCKOFF R W G. Crystal structures[M]. New York: Interscience, 1951. [25] MEGAW H D. Ferroelectricity and crystal structure.Ⅱ[J]. Acta Crystallographica, 1954, 7(2): 187-194. [26] SPEAKMAN J C, ABRAHAMS S C, MEGAW H D. Crystallography[J]. Annual Reports on the Progress of Chemistry, 1956, 53: 383. [27] SHIOZAKI Y, MITSUI T. Powder neutron diffraction study of LiNbO3[J]. Journal of Physics and Chemistry of Solids, 1963, 24(8): 1057-1061. [28] ABRAHAMS S C, REDDY J M, BERNSTEIN J L. Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 997-1012. [29] ABRAHAMS S C, HAMILTON W C, REDDY J M. Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 1013-1018. [30] ABRAHAMS S C, LEVINSTEIN H J, REDDY J M. Ferroelectric lithium niobate. 5. Polycrystal X-ray diffraction study between 24° and 1 200 ℃[J]. Journal of Physics and Chemistry of Solids, 1966, 27(6/7): 1019-1026. [31] NYE J F. Physical properties of crystals (Clarendon Press, Oxford, 1957)[M]. Oxford: Clarendon Press, 1957 [32] 铌酸锂晶体的生长[J].压电与声光,1971(1):45-53. Growth of LiNbO3 crystal [J]. Piezoelectrics & Acoustooptics, 1971(1): 45-53(in Chinese). [33] ZHONG G G, JIN J, WU Z K. Measurements of optically induced refractive-index damage of lithium niobate doped with different concentrations of MgO[J]. 11th International Quantum Electronics Conference, 1980: 631. [34] FENG D, MING N B, HONG J F, et al. Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains[J]. Applied Physics Letters, 1980, 37(7): 607-609. [35] HAMAGUCHI C, Quantum Structures. InBasic Semiconductor Physics[M]. Springer Berlin Heidelberg: Berlin, Heidelberg, 2001: 307-399. [36] POCKELS F C A. Lehrbuch der kristalloptik[M]. BG Teubner, 1906 [37] PETERSON G E, BALLMAN A A, LENZO P V, et al. Electro-optic properties of LiNbO3[J]. Applied Physics Letters, 1964, 5(3): 62-64. [38] LENZO P V, SPENCER E G, NASSAU K. Electro-optic coefficients in single-domain ferroelectric lithium niobate[J].JOSA, 1966, 56(5): 633-635. [39] TURNER E H. High-frequency electro-optic coefficients of lithium niobate[J]. Applied Physics Letters, 1966, 8(11): 303-304. [40] KAMINOW I P, SHARPLESS W M. Performance of LiTaO3 and LiNbO3 light modulators at 4 GHz[J]. Applied Optics, 1967, 6(2): 351-352. [41] KAMINOW I P, TURNER E H. Electrooptic light modulators[J]. Applied Optics, 1966, 5(10): 1612-1628. [42] BERLINCOURT D A, CURRAN D R, JAFFE H. Piezoelectric and piezomagnetic materials and their function in transducers[M]//Physical Acoustics. Amsterdam: Elsevier, 1964: 169-270. [43] KAMINOW I P. Barium titanate light phase modulator[J]. Applied Physics Letters, 1965, 7(5): 123-125. [44] KAMINOW I P. Barium titanate light modulator.Ⅱ[J]. Applied Physics Letters, 1966, 8(11): 305-307. [45] HIRSCHMANN E. Electro-optic and magneto-optic modulators[R]. Washington D. C.: NASA, 1967. [46] BASS J C. A review of electro-optic beam deflection techniques[J]. Radio and Electronic Engineer,1968, 34(6): 345-352. [47] SHANG J F, SUN J, LI Q L, et al. Single-block pulse-on electro-optic Q-switch made of LiNbO3[J]. Scientific Reports, 2017, 7: 4651. [48] SHANG J F, SUN J, LI Q L, et al. High-repetition-rate LiNbO3 electro-optic Q-switched Nd∶YVO4 laser[J]. Acta Photonica Sinica, 2018, 47(5): 0514001. [49] 李清连,孙 军,吴 婧,等.系列铌酸锂晶体在电光调Q激光系统中的激光损伤性能研究[J].人工晶体学报,2019,48(9):1615-1620. LI Q L, SUN J, WU J, et al. Laser damage of a series of lithium niobate crystals under Q-switched laser system[J]. Journal of Synthetic Crystals, 2019, 48(9): 1615-1620(in Chinese). [50] Integrated optical amplitude modulator: modulate light with high frequencies [OL]. https://www.jenoptik.com/products/optoelectronic-systems/light-modulation/integrated-optical-modulators-fiber-coupled/amplitude-modulator [51] MAKER P D, TERHUNE R W, NISENOFF M, et al. Effects of dispersion and focusing on the production of optical harmonics[J]. Physical Review Letters, 1962, 8(1): 21-22. [52] ARMSTRONG J A, BLOEMBERGEN N, DUCUING J, et al. Interactions between light waves in a nonlinear dielectric[J]. Physical Review, 1962, 127(6): 1918-1939. [53] MILLER R C. Optical second harmonic generation in piezoelectric crystals[J]. Applied Physics Letters, 1964, 5(1): 17-19. [54] MILLER R C, BOYD G D, SAVAGE A. Nonlinear optical interactions in LiNbO3 without double refraction[J]. Applied Physics Letters, 1965, 6(4): 77-79. [55] GIORDMAINE J A, MILLER R C. Tunable coherent parametric oscillation in LiNbO3 at optical frequencies[J]. Physical Review Letters, 1965, 14(24): 973-976. [56] GIORDMAINE J A, MILLER R C. Optical parametric oscillation in the visible spectrum[J]. Applied Physics Letters, 1966, 9(8): 298-300. [57] HOBDEN M V, WARNER J. The temperature dependence of the refractive indices of pure lithium niobate[J]. Physics Letters, 1966, 22(3): 243-244. [58] MIDWINTER J E, WARNER J. Up-conversion of near infrared to visible radiation in lithium-meta-niobate[J]. Journal of Applied Physics, 1967, 38(2): 519-523. [59] MIDWINTER J E. Image conversion from 1.6 μm to the visible in lithium niobate[J]. Applied Physics Letters, 1968, 12(3): 68-70. [60] MIDWINTER J. Parametric infrared image converters[J]. IEEE Journal of Quantum Electronics, 1968, 4(11): 716-720. [61] ANDREWS R. Wide angular aperture image up-conversion[J]. IEEE Journal of Quantum Electronics, 1969, 5(11): 548-550. [62] MIDWINTER J E. Infrared up conversion in lithium-niobate with large bandwidth and solid acceptance angle[J]. Applied Physics Letters, 1969, 14(1): 29-32. [63] ABBAS M M, KOSTIUK T, OGILVIE K W. Infraredupconversion for astronomical applications[J]. Applied Optics, 1976, 15(4): 961-970. [64] FARIES D W. Far-infrared generation by nonlinear optical interaction[D].Berkeley: University of California Berkeley, 1969. [65] AUSTON D H, GLASS A M, LEFUR P. Tunable far-infrared generation by difference frequency mixing of dye lasers in reduced (black) lithium niobate[J]. Applied Physics Letters, 1973, 23(1): 47-48. [66] THOMPSON D E, MCMULLEN J D, ANDERSON D B. Second-harmonic generation in GaAs“stack of plates” using high-power CO2 laser radiation[J]. Applied Physics Letters, 1976, 29(2): 113-115. [67] DEWEY C F, HOCKER L O. Enhanced nonlinear optical effects in rotationally twinned crystals[J]. Applied Physics Letters, 1975, 26(8): 442-444. [68] ZHU S N, ZHU Y Y, MING N B. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice[J]. Science, 1997, 278(5339): 843-846. [69] WEI D Z, WANG C W, WANG H J, et al. Experimental demonstration of a three-dimensional lithium niobate nonlinear photonic crystal[J]. Nature Photonics, 2018, 12(10): 596-600. [70] Covesion Ltd. SHG crystals[EB/OL]. (2020-10-09)[2021-04-26]https://www.covesion.com/en/products/mgoppln-crystals/shg-crystals. [71] HU X P, ZHAO G, YAN Z, et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd∶YAG laser with a cascadedLiTaO3 superlattice[J]. Optics Letters, 2008, 33(4): 408-410. [72] WARNER A. New piezoelectric materials[C]//19th Annual Symposium on Frequency Control. April 20-22, 1965, Atlantic City, NJ, USA. IEEE, 1965: 5-21. [73] JAFFE H. Piezoelectric ceramics[J]. Journal of the American Ceramic Society, 1958, 41(11): 494-498. [74] BRIENZA M J, DEMARIA A J. Laser-induced microwave sound by surface heating[J]. Applied Physics Letters, 1967, 11(2): 44-46. [75] WEN C P, MAYO R F. Acoustic attenuation of single-domain lithium niobate[J]. IEEE Transactions on Electron Devices, 1966, ED-13(8/9): 678. [76] FRASER D B, WARNER A W. Lithium niobate: a high-temperature piezoelectric transducer material[J]. Journal of Applied Physics, 1966, 37(10): 3853-3854. [77] GRIFFIN J W, PETERS T J, POSAKONY G J, et al. Under-sodium viewing: a review of ultrasonic imaging technology for liquid metal fast reactors[R]. Office of Scientific and Technical Information (OSTI), 2009. [78] BAO X Q, SCOTT J, BOUDREAU K, et al. High temperature piezoelectric drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009. San Diego, California, USA. SPIE, 2009. [79] BAO X Q, BAR-COHEN Y, SCOTT J, et al. Ultrasonic/sonic drill for high temperature application[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2010. San Diego, California, USA. SPIE, 2010. [80] BAO X Q, BAR-COHEN Y, SHERRIT S, et al. High temperature piezoelectric drill[C]//Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2012. San Diego, California. SPIE, 2012. [81] DAMON R W. Solid-state microwave delay lines[J]. IEEE Spectrum, 1967, 4(6): 87-92. [82] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74. [83] CHEN F S, LAMACCHIA J T, FRASER D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 1968, 13(7): 223-225. [84] CHEN F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 1969, 40(8): 3389-3396. [85] HALL T J, JAURA R, CONNORS L M, et al. The photorefractive effect—a review[J]. Progress in Quantum Electronics, 1985, 10(2): 77-146. [86] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960. [87] BOYD G D, BOND W L, CARTER H L. Refractive index as a function of temperature in LiNbO3[J]. Journal of Applied Physics, 1967, 38(4): 1941-1943. [88] BYER R L, PARK Y K, FEIGELSON R S, et al. Efficient second-harmonic generation of Nd∶YAG laser radiation using warm phasematching LiNbO3[J]. Applied Physics Letters, 1981, 39(1): 17-19. [89] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998. [90] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158. [91] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction: LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281. [92] YAN W B, SHI L H, CHEN H J, et al. Investigations on the UV photorefractivity of LiNbO3∶Hf[J]. Optics Letters, 2010, 35(4): 601-603. [93] 李树奇,刘士国,孔勇发,等.四价掺杂铌酸锂晶体抗光折变性能研究[J].人工晶体学报,2006,35(3):474-477. LI S Q, LIU S G, KONG Y F, et al. Optical damage resistance in LiNbO3 crystals doped with tetravalent ions[J]. Journal of Synthetic Crystals, 2006, 35(3): 474-477(in Chinese). [94] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal:zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908. [95] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters,2009, 35(1): 10. [96] XIN F F, ZHANG G Q, GE X Y, et al. Ultraviolet band edge photorefractivity in LiNbO3∶Sn crystals[J]. Optics Letters, 2011, 36(16): 3163-3165. [97] AMODEI J J, PHILLIPS W, STAEBLER D L. Improved electrooptic materials and fixing techniques for holographic recording[J]. Applied Optics, 1972, 11(2): 390. [98] GAYLORD T K, TITTEL F K. Angular selectivity of lithium niobate volume holograms[J]. Journal of Applied Physics, 1973, 44(10): 4771-4773. [99] WHITE J O, CRONIN-GOLOMB M, FISCHER B, et al. Coherent oscillation by self-induced gratings in the photorefractive crystal BaTiO3[J]. Applied Physics Letters, 1982, 40(6): 450-452. [100] CRONIN-GOLOMB M, FISCHER B, WHITE J O, et al. Passive phase conjugate mirror based on self-induced oscillation in an optical ring cavity[J]. Applied Physics Letters, 1983, 42(11): 919-921. [101] KURZ H. Wavelength dependence of the photorefractive process in doped LiNbO3[J]. Ferroelectrics, 1974, 8(1): 437-439. [102] MAGNUSSON R, GAYLORD T K. Laser scattering induced holograms in lithium niobate[J]. Applied Optics, 1974, 13(7):1545_1-1548. [103] ZHANG G Y, LI Q X, HO P P, et al. Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3∶Fe[J]. Applied Optics, 1986, 25(17): 2955-2959. [104] ZHANG G,LIU S, WU Z, et al. Degenerate stimulated parametric scattering in LiNbO3∶Fe[J]. Journal of the Optical Society of America B, 1987, 4(6): 882. [105] LIU S M, XU J J, ZHANG G Y, et al. Light-climbing effect in LiNbO3∶Fe crystal[J]. Applied Optics, 1994, 33(6): 997-999. [106] XU J J, ZHANG G Y, LI F F, et al. Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals[J]. Optics Letters, 2000, 25(2): 129-131. [107] LAMARQUE T, NICOLAUS R, LOISEAUX B, et al. Programmable 2D laser marking device based on a pulsed UV image coherent amplifier[C]//Proc SPIE 5063, Fourth International Symposium on Laser Precision Microfabrication, 2003, 5063: 386-388. [108] Microsoft Research Lab. Optics for the cloud[OL]. (2021-03-03)[2021-04-26]https://www.microsoft.com/en-us/research/group/optics-for-the-cloud. [109] TAY S,BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698. [110] TIAN T, KONG Y F, LIU S G, et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 2013, 21(9): 10460-10466. [111] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308. [112] ZHENG D H, WANG W W, WANG S L, et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate[J]. Applied Physics Letters, 2019, 114(24): 241903. [113] MILLER S E. Integrated optics: an introduction[J]. The Bell System Technical Journal, 1969, 48(7): 2059-2069. [114] KAMINOW I P, CARRUTHERS J R. Optical waveguiding layers in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1973, 22(7): 326-328. [115] OHMACHI Y, NODA J. Electro-optic light modulator with branched ridge waveguide[J]. Applied Physics Letters, 1975, 27(10): 544-546. [116] JACKEL J L, RICE C E, VESELKA J J. Proton exchange for high-index waveguides in LiNbO3[J]. Applied Physics Letters, 1982, 41(7): 607-608. [117] LEVY M, OSGOOD R M, LIU R, et al. Fabrication of single-crystal lithium niobate films by crystal ion slicing[J]. Applied Physics Letters, 1998, 73(16): 2293-2295. [118] RABIEI P, GUNTER P. Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding[J]. Applied Physics Letters, 2004, 85(20): 4603-4605. [119] HU H, GUI L, RICKEN R, et al. Towards nonlinear photonic wires in lithium niobate[C]//SPIE OPTO. Proc SPIE 7604, Integrated Optics: Devices, Materials, and Technologies XIV, San Francisco, California, USA. 2010, 7604: 76040R. [120] 李青云,朱厚彬,张洪湖,等.铌酸锂单晶薄膜材料[J].人工晶体学报,2021,50(4):716-723. LI Q Y, ZHU H B, ZHANG H H, et al. Single-crystal lithium niobate thin films[J]. Journal of Synthetic Crystals, 2021, 50(4): 716-723(in Chinese). [121] ZHANG M, WANG C, CHENG R, et al. Monolithic ultra-high-Q lithium niobate microring resonator[J]. Optica, 2017, 4(12): 1536-1537. [122] DESIATOV B, SHAMS-ANSARI A, ZHANG M, et al. Ultra-low-loss integrated visible photonics usingthin-film lithium niobate[J]. Optica, 2019, 6(3): 380-384. [123] WU R B, ZHANG J H, YAO N, et al. Lithium niobate micro-disk resonators of quality factors above 107[J]. Optics Letters, 2018, 43(17): 4116-4119. [124] WU R B, WANG M, XU J, et al. Long low-loss-litium niobate on insulator waveguides with sub-nanometer surface roughness[J]. Nanomaterials, 2018, 8(11): 910. [125] RABIEI P, STEIER W H. Lithium niobate ridge waveguides and modulators fabricated using smart guide[J]. Applied Physics Letters, 2005, 86(16): 161115. [126] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256. [127] HONARDOOST A, ABDELSALAM K, FATHPOUR S. Rejuvenating a versatile photonic material: thin-film lithium niobate[J]. Laser & Photonics Reviews, 2020, 14(9): 2000088. [128] SUN D H, ZHANG Y W, WANG D Z, et al. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications[J]. Light: Science & Applications, 2020, 9: 197. [129] QI Y F, LI Y. Integrated lithium niobate photonics[J]. Nanophotonics, 2020, 9(6): 1287-1320. [130] 程 亚.铌酸锂集成光路:孕育自主产业链的前沿基础研究[J].物理,2020,49(5):277-284. CHENG Y. Photonic integrated circuits on lithium niobate: today’s fundamental research for tomorrow’s industry[J]. Physics, 2020, 49(5): 277-284(in Chinese). [131] 李庚霖,贾曰辰,陈 峰.绝缘体上铌酸锂薄膜片上光子学器件的研究进展[J].物理学报,2020,69(15):157801. LI G L, JIA Y C, CHEN F. Research progress of photonics devices on lithium-niobate-on-insulator thin films[J]. Acta Physica Sinica, 2020, 69(15): 157801(in Chinese). [132] JIA Y C, WANG L, CHEN F. Ion-cut lithium niobate on insulator technology: recent advances and perspectives[J]. Applied Physics Reviews, 2021, 8(1): 011307. [133] ZHENG Y L, CHEN X F. Nonlinear wave mixing in lithium niobate thin film[J]. Advances in Physics: X, 2021, 6(1): 1889402. [134] 陈险峰,郑远林,刘海港,等.非线性频率转换新原理新平台与新应用研究[J].光学学报,2021,41(1):0119001. CHEN X F, ZHENG Y L, LIU H G, et al. New principle, platform, and application of nonlinear frequency conversion[J]. Acta Optica Sinica, 2021, 41(1): 0119001(in Chinese). [135] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [136] HE M B, XU M Y, REN Y X, et al. High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit·s-1 and beyond[J]. Nature Photonics, 2019, 13(5): 359-364. [137] WU R B, LIN J T, WANG M, et al. Fabrication of a multifunctional photonic integrated chip on lithium niobate on insulator using femtosecond laser-assisted chemomechanicalpolish[J]. Optics Letters, 2019, 44(19): 4698-4701. [138] LI M X, LING J W, HE Y, et al. Lithium niobate photonic-crystal electro-optic modulator[J]. Nature Communications, 2020, 11: 4123. [139] JIANG X F, XIAO Y F, ZOU C L, et al. Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities[J]. Advanced Materials, 2012, 24(35): OP260-OP264. [140] CHEN W, KAYA ÖZDEMIR S, ZHAO G, et al. Exceptional points enhance sensing in an optical microcavity[J]. Nature, 2017, 548(7666): 192-196. [141] ZHANG X Y, CAO Q T, WANG Z, et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface[J]. Nature Photonics, 2019, 13(1): 21-24. [142] XIAO Y F, ZOU C, GONG Q, et al. Ultra-high-Q optical microcavities[M]. World Scientific, 2020. [143] LIN J T, XU Y X, FANG Z W, et al. Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining[J]. Scientific Reports, 2015, 5: 8072. [144] WANG J, BO F, WAN S, et al. High-Q lithium niobate microdisk resonators on a chip for efficient electro-opticmodulation[J]. Optics Express, 2015, 23(18): 23072-23078. [145] ZHENG Y, FANG Z, LIU S, et al. High-Q exterior whispering-gallery modes in a double-layer crystalline microdisk resonator[J]. Physical Review Letters, 2019, 122(25): 253902. [146] WANG C, ZHANG M, YU M J, et al. Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation[J]. Nature Communications, 2019, 10: 978. [147] ZHANG M, BUSCAINO B, WANG C, et al. Broadband electro-optic frequency comb generation in a lithium niobate microring resonator[J]. Nature, 2019, 568(7752): 373-377. [148] WANG Z, FANG Z W, LIU Z X, et al. On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator[J]. Optics Letters, 2021, 46(2): 380-383. [149] LIU Y A, YAN X S, WU J W, et al. On-chip erbium-doped lithium niobate microcavity laser[J]. Science China Physics, Mechanics & Astronomy, 2020, 64(3): 234262. [150] LUO Q, HAO Z Z, YANG C, et al. Microdisk lasers on an erbium-doped lithium-niobite chip[J]. Science China Physics, Mechanics & Astronomy,2020, 64(3): 234263. [151] YIN D F, ZHOU Y, LIU Z X, et al. Electro-optically tunable microring laser monolithically integrated on lithium niobate on insulator[J]. Optics Letters, 2021, 46(9): 2127-2130. [152] YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. [153] REN M X, CAI W, XU J J. Tailorable dynamics in nonlinear optical metasurfaces[J]. Advanced Materials, 2020, 32(3): 1806317. [154] 邓俊鸿,李贵新.非线性光学超构表面[J].物理学报,2017,66(14):147803. DENG J H, LI G X. Nonlinear photonic metasurfaces[J]. Acta Physica Sinica, 2017, 66(14): 147803(in Chinese). [155] 李 林,程 亚,祝世宁.浅谈超构表面在量子光学中的应用[J].物理, 2021, 50(5): 308-316. Li L, Cheng Y, Zhu S N. Application of super structured surface in quantum optics. Physics, 2021, 50(5): 308-316(in Chinese). [156] YANG Y M, KRAVCHENKO I I, BRIGGS D P, et al. All-dielectric metasurface analogue of electromagnetically induced transparency[J]. Nature Communications, 2014, 5: 5753. [157] LIU H Z, GUO C, VAMPA G, et al. Enhanced high-harmonic generation from an all-dielectric metasurface[J]. Nature Physics, 2018, 14(10): 1006-1010. [158] GAO Y S, FAN Y B, WANG Y J, et al. Nonlinearholographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061. [159] VABISHCHEVICH P P, LIU S, SINCLAIR M B, et al. Enhanced second-harmonic generationin broken symmetry Ⅲ-V semiconductor metasurfaces driven by fano resonance[J]. 2018: FW3G.1. [160] LIU S, VABISHCHEVICH P P, VASKIN A, et al. An all-dielectric metasurface as a broadband optical frequency mixer[J]. Nature Communications, 2018, 9: 2507. [161] SUN S, ZHOU Z, ZHANG C, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452. [162] SEMMLINGER M, ZHANG M, TSENG M L, et al. Generating third harmonic vacuum ultraviolet light with a TiO2 metasurface[J]. Nano Letters, 2019, 19(12): 8972-8978. [163] ZHANG D, REN M X, WU W, et al. Nanoscale beam splitters based on gradient metasurfaces[J]. Optics Letters, 2018, 43(2): 267-270. [164] GAO B F, REN M X, WU W, et al. Lithium niobate metasurfaces[J]. Laser & Photonics Reviews, 2019, 13(5): 1800312. [165] MA J J, CHEN J X, REN M X, et al. Second-harmonic generation and its nonlinear depolarization from lithium niobate thin films[J]. Optics Letters, 2020, 45(1): 145-148. [166] MA J J,REN M X, WU W, et al. Resonantly tunable second harmonic generation from lithium niobate metasurfaces[EB/OL]. 2020. [167] MA J J, XIE F, CHEN W J, et al. Nonlinear lithium niobate metasurfaces for second harmonic generation[J].Laser & Photonics Reviews, 2021, 15(5): 2000521. [168] FEDOTOVA A, YOUNESI M, SAUTTER J, et al. Second-harmonic generation in resonant nonlinear metasurfaces based on lithium niobate[J]. Nano Letters, 2020, 20(12): 8608-8614. [169] CARLETTI L, ZILLI A, MOIA F, et al. Steering and encoding the polarization of the second harmonic in the visible with a monolithic LiNbO3 metasurface[J]. ACS Photonics, 2021, 8(3): 731-737. [170] FANG B, LI H M, ZHU S N, et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces[J]. Photonics Research, 2020, 8(8): 1296-1300. [171] KIM K H, RIM W S. Anapole resonances facilitated by high-index contrast between substrate and dielectric nanodisk enhance vacuum ultraviolet generation[J]. ACS Photonics, 2018, 5(12): 4769-4775. [172] LI Y, HUANG Z J, SUI Z, et al. Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation[J]. Nanophotonics, 2020, 9(11): 3575-3585. [173] TIMPU F, SENDRA J, RENAUT C, et al. Lithium niobate nanocubes as linear and nonlinear ultravioletMie resonators[J]. ACS Photonics, 2019, 6(2): 545-552. [174] GAO B F, REN M X, WU W, et al. Electro-optic lithium niobate metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(4): 1-6. |
[1] | 张雄, 高作轩, 高开放, 师丽红, 李菲菲, 樊博麟, 陈立品, 昝知韬, 陈洪建, 阎文博. 铌酸锂基光伏微流体操控技术[J]. 人工晶体学报, 2021, 50(7): 1327-1339. |
[2] | 葛薛豪, 吴静, 邢栋梁, 潘闻景, 张宇林, 蒋青松. NiCoSe4薄膜制备及其在染料敏化太阳能电池中的应用[J]. 人工晶体学报, 2021, 50(6): 1062-1069. |
[3] | 张纬统, 代波, 任勇, 倪经. 不同退火温度对钡铁氧体薄膜磁性的影响[J]. 人工晶体学报, 2021, 50(5): 845-850. |
[4] | 王欣月, 张兆诚, 黎智杰, 何婉婷, 温锦秀, 罗坚义, 唐秀凤, 王忆. 基底加热温度对ITO薄膜的性能影响研究[J]. 人工晶体学报, 2021, 50(5): 858-865. |
[5] | 刘宏, 桑元华, 孙德辉, 王东周, 王继扬. 信息时代的铌酸锂晶体:进展与展望[J]. 人工晶体学报, 2021, 50(4): 708-715. |
[6] | 李青云, 朱厚彬, 张洪湖, 张秀全, 胡卉. 铌酸锂单晶薄膜材料[J]. 人工晶体学报, 2021, 50(4): 716-723. |
[7] | 王婷, 赵红莉, 郭世伟, 姚娟, 李爽, 符跃春, 沈晓明, 何欢. n-In0.35Ga0.65N/p-Si异质结的制备及其电学性能研究[J]. 人工晶体学报, 2021, 50(3): 484-490. |
[8] | 由甲川, 赵雷, 刁宏伟, 王文静. 沉积温度对等离子体化学气相沉积制备硅氧薄膜微结构的影响[J]. 人工晶体学报, 2021, 50(3): 509-515. |
[9] | 王鑫伟, 车致远, 张兴, 李玲薇, 张伟, 苏适, 马晋文. 不同形貌TiO2薄膜的可控制备及其光电化学性能研究[J]. 人工晶体学报, 2021, 50(3): 516-522. |
[10] | 高灿灿, 姬凯迪, 马奎, 杨发顺. 磁控溅射衬底加热温度和后退火温度对制备β-Ga2O3薄膜材料的影响[J]. 人工晶体学报, 2021, 50(2): 296-301. |
[11] | 简小刚, 唐金垚, 马千里, 胡吉博, 尹明睿. CVD金刚石薄膜亚表面层氢杂质对表面活化反应的影响[J]. 人工晶体学报, 2021, 50(2): 302-309. |
[12] | 张晓勇, 张琰春, 张晓玉, 张森. 化学水浴沉积法制备硫化镉薄膜的微结构和性能[J]. 人工晶体学报, 2021, 50(2): 310-317. |
[13] | 林晓霞, 李慧, 付德刚. 还原氧化石墨烯/TiO2纳米线复合膜的制备及对Cu2+吸附性的影响[J]. 人工晶体学报, 2021, 50(2): 318-324. |
[14] | 张伟;张敏;郭凯鑫;崔瑞瑞;邓朝勇. Ga0.8Fe1.2O3/Ba0.8Ca0.2Ti0.8Zr0.2O3复合薄膜的制备和铁电性能研究[J]. 人工晶体学报, 2020, 49(9): 1599-1603. |
[15] | 杨焕银;郭红力;孙红娟;彭同江. 不同表面层铁电薄膜的相变理论研究[J]. 人工晶体学报, 2020, 49(9): 1604-1608. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||