人工晶体学报 ›› 2021, Vol. 50 ›› Issue (7): 1200-1221.
何俊1, 黄坤1, 庄继成2
收稿日期:
2021-04-20
出版日期:
2021-07-15
发布日期:
2021-08-16
通讯作者:
黄坤,博士,研究员。E-mail:huangk17@ustc.edu.cn
作者简介:
何俊(1996—),男,安徽省人,硕士研究生。E-mail:hejun23@mail.ustc.edu.cn
基金资助:
HE Jun1, HUANG Kun1, ZHUANG Jicheng2
Received:
2021-04-20
Online:
2021-07-15
Published:
2021-08-16
摘要: 现代显微镜中的物镜受限于瑞利衍射极限,其分辨率不能满足生物成像、材料科学以及光刻等领域的需求。目前,突破瑞利衍射极限的方法可分为近场(如扫描近场光学显微镜、超透镜、微球透镜)和远场(如受激辐射损耗显微镜、光激活定位显微镜、随机光学重建显微镜)方法。然而,前者利用纳米探针散射物体表面一个波长范围内的倏逝波,极具挑战性;而后者对样品有选择性,只适用于荧光分子样品,且会对样品造成损伤。近年来,平板透镜利用波带片、光子筛以及梯度超构表面等人工微纳结构来控制光的衍射,具有小型化、高数值孔径、大焦深、亚衍射极限聚焦等功能,为远场无标记超分辨率成像提供了一个可行的解决方案。本文从衍射聚焦光学的统一理论出发,总结平面衍射透镜的最新进展,揭示基于光场调控实现纳米聚焦的物理机制,介绍平板衍射透镜的设计原理、光学性能、微纳结构特性和材料影响,详细讨论平板衍射透镜的光学像差(如离轴像差和色差)及其校正,平板衍射透镜在纳米成像、光刻以及光电子能谱仪中的应用,最后展望其未来的发展方向和机遇。
中图分类号:
何俊, 黄坤, 庄继成. 基于人工微纳结构的平板衍射透镜[J]. 人工晶体学报, 2021, 50(7): 1200-1221.
HE Jun, HUANG Kun, ZHUANG Jicheng. Planar Diffractive Lenses with Artificial Micro/Nano-Structures[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(7): 1200-1221.
[1] ABBE E. A contribution to the theory of the microscope and the nature of microscopic vision. [2] RAYLEIGH L. On the manufacture and theory of diffraction-gratings[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1874, 47(310): 81-93. [3] POON T C, MOTAMEDI M. Optical/digital incoherent image processing for extended depth of field[J]. Applied Optics, 1987, 26(21): 4612-4615. [4] ROBERTS, PUBLISHERS C. Introduction to fourier optics[M]. USA:Greenwoood Village, CO, 2005. [5] NOVOTNY L, HECHT B. Theoretical methods in nano-optics[M]//Principles of Nano-Optics. Cambridge: Cambridge University Press, 2012: 500-522. [6] SYNGE E H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356-362. [7] BEK A, VOGELGESANG R, KERN K. Apertureless scanning near field optical microscope with sub-10nm resolution[J]. Review of Scientific Instruments, 2006, 77(4): 043703. [8] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. [9] LUO X G, ISHIHARA T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. [10] WANG Z B, GUO W, LI L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011, 2: 218. [11] WANG F, LIU L, YU H, et al. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging[J]. Nature Communications, 2016, 7: 13748. [12] HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. [13] KLAR T A, HELL S W. Subdiffraction resolution in far-field fluorescence microscopy[J]. Optics Letters, 1999, 24(14): 954-956. [14] BETZIG E, PATTERSON G H, SOUGRAT R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793): 1642-1645. [15] SHROFF H, GALBRAITH C G, GALBRAITH J A, et al. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods, 2008, 5(5): 417-423. [16] PLANCHON T A, GAO L, MILKIE D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5): 417-423. [17] RUST M J, BATES M, ZHUANG X W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)[J]. Nature Methods, 2006, 3(10): 793-796. [18] BATES M, HUANG B, DEMPSEY G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845): 1749-1753. [19] PFENDER M, ASLAM N, WALDHERR G, et al. Single spin stochastic optical reconstruction microscopy[EB/OL]. https://arxiv.org/abs/1404.1520. [20] LEE H L D, LORD S J, IWANAGA S, et al. Superresolution imaging of targeted proteins in fixed and living cells using photoactivatable organic fluorophores[J]. Journal of the American Chemical Society, 2010, 132(43): 15099-15101. [21] HEILEMANN M, VAN DE LINDE S, SCHÜTTPELZ M, et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes[J]. Angewandte Chemie International Edition, 2008, 47(33): 6172-6176. [22] GUSTAFSSON M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution[J]. PNAS, 2005, 102(37): 13081-13086. [23] DERTINGER T, HEILEMANN M, VOGEL R, et al. Superresolution optical fluctuation imaging with organic dyes[J]. Angewandte Chemie, 2010, 122(49): 9631-9633. [24] BRETSCHNEIDER S, EGGELING C, HELL S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007, 98(21): 218103. [25] XIE X S, CHEN Y Z, YANG K, et al. Harnessing the point-spread function for high-resolution far-field optical microscopy[J]. Physical Review Letters, 2014, 113(26): 263901. [26] LI X P, CAO Y Y, GU M. Superresolution-focal-volume induced 3.0 Tbytes/disk capacity by focusing a radially polarized beam[J]. Optics Letters, 2011, 36(13): 2510-2512. [27] DAVIS B J, KARL W C, SWAN A K, et al. Capabilities and limitations of pupil-plane filters for superresolution and image enhancement[J]. Optics Express, 2004, 12(17): 4150-4156. [28] OSHEROVICH E, SHECHTMAN Y, SZAMEIT A, et al. Sparsity-based single-shot subwavelength coherent diffractive imaging[J]. 2012: CF3C.7. [29] YANG X S, XIE H, ALONAS E, et al. Mirror enhanced STED super-resolution microscopy[J]. Light: Science & Applications, 2017: ATh1A.2. [30] HAO X, KUANG C F, GU Z T, et al. From microscopy to nanoscopy via visible light[J]. Light: Science & Applications, 2013, 2(10): e108. [31] SHEPPARD C J, CHOUDHURY A. Annular pupils, radial polarization, and superresolution[J]. Applied Optics, 2004, 43(22): 4322-4327. [32] MARTÍNEZ-CORRAL M, ANDRÉS P, ZAPATA-RODRÍGUEZ C J, et al. Three-dimensional superresolution by annular binary filters[J]. Optics Communications, 1999, 165(4/5/6): 267-278. [33] ROGERS E T F, LINDBERG J, ROY T, et al. A super-oscillatory lens optical microscope for subwavelength imaging[J]. Nature Materials, 2012, 11(5): 432-435. [34] QIN F, HUANG K, WU J F, et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance[J]. Advanced Materials, 2017, 29(8): 1602721. [35] GAZIT S, SZAMEIT A, ELDAR Y C, et al. Super-resolution and reconstruction of sparse sub-wavelength images[J]. Optics Express, 2009, 17(26): 23920-23946. [36] SHECHTMAN Y, GAZIT S, SZAMEIT A, et al. Super-resolution and reconstruction of sparse images carried by incoherent light[J]. Optics Letters, 2010, 35(8): 1148-1150. [37] WANG Z, YUAN G H, YANG M, et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides[J]. Nano Letters, 2020, 20(11): 7964-7972. [38] QIN F, HUANG K, WU J F, et al. Shaping a subwavelength needle with ultra-long focal length by focusing azimuthally polarized light[J]. Scientific Reports, 2015, 5: 9977. [39] YUAN G H, ROGERS E T F, ROY T, et al. Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths[J]. Scientific Reports, 2014, 4: 6333. [40] HUANG F M, KAO T S, FEDOTOV V A, et al. Nanohole array as a lens[J]. Nano Letters, 2008, 8(8): 2469-2472. [41] ROGERS E T F, SAVO S, LINDBERG J, et al. Super-oscillatory optical needle[J]. Applied Physics Letters, 2013, 102(3): 031108. [42] ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics Express, 2013, 21(6): 7577-7582. [43] YE H P, QIU C W, HUANG K, et al. Creation of a longitudinally polarized subwavelength hotspot with an ultra-thin planar lens: vectorial Rayleigh-Sommerfeld method[J]. Laser Physics Letters, 2013, 10(6): 065004. [44] ZHAN Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1. [45] HUANG K, SHI P, CAO G W, et al. Vector-vortex Bessel-Gauss beams and their tightly focusing properties[J]. Optics Letters, 2011, 36(6): 888-890. [46] BORN M, WOLF E. Principles of Optics[M]. UK: CUP Archive, Elsevier ,2000. [47] KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. [48] MAO Y H, ZHAO D, YAN S, et al. A vacuum ultraviolet laser with a submicrometer spot for spatially resolved photoemission spectroscopy[J]. Light: Science & Applications, 2021, 10: 22. [49] ZHAO X N, HU J P, LIN Y, et al. Ultra-broadband achromatic imaging with diffractive photon sieves[J]. Scientific Reports, 2016, 6: 28319. [50] HUANG K, LIU H, GARCIA-VIDAL F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6: 7059. [51] LIU Y J, LIU H, LEONG E S P, et al. Fractal holey metal microlenses with significantly suppressed side lobes and high-order diffractions in focusing[J]. Advanced Optical Materials, 2014, 2(5):487-492. [52] ISHII S, SHALAEV V M, KILDISHEV A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163. [53] KIPP L, SKIBOWSKI M, JOHNSON R L, et al. Sharper images by focusing soft X-rays with photon sieves[J]. Nature, 2001, 414(6860): 184-188. [54] ZHANG Q, DONG F L, LI H X, et al. High-numerical-aperture dielectric metalens for super-resolution focusing of oblique incident light[J]. Advanced Optical Materials, 2020, 8(9): 1901885. [55] ZANG W, YUAN Q, CHEN R, et al. Chromatic dispersion manipulation based on metalenses[J]. Advanced Materials (Deerfield Beach, Fla), 2020, 32(27): e1904935. [56] CHEN W T, ZHU A Y, SISLER J, et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures[J]. Nature Communications, 2019, 10: 355. [57] WANG S, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. [58] CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. [59] CHEN W T, ZHU A Y, KHORASANINEJAD M, et al. Immersion meta-lenses at visible wavelengths for nanoscale imaging[J]. Nano Letters, 2017, 17(5): 3188-3194. [60] AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. [61] HUANG K, YE H P, TENG J H, et al. Optimization-free superoscillatory lens using phase and amplitude masks[J]. Laser & Photonics Reviews, 2014, 8(1): 152-157. [62] YE H P, WAN C, HUANG K, et al. Creation of vectorial bottle-hollow beam using radially or azimuthally polarized light[J]. Optics Letters, 2014, 39(3): 630-633. [63] HUANG K, SHI P, KANG X L, et al. Design of DOE for generating a needle of a strong longitudinally polarized field[J]. Optics Letters, 2010, 35(7): 965-967. [64] HE J, ZHUANG J C, DING L, et al. Optimization-free customization of optical tightly focused fields: uniform needles and hotspot chains[J]. Applied Optics, 2021, 60(11): 3081-3087. [65] WANG H F, SHI L P, LUKYANCHUK B, et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2008, 2(8): 501-505. [66] GHALEHBEYGI O T, WILLS A G, ROUTLEY B S, et al. Gradient-based optimization for efficient exposure planning in maskless lithography[C]//2017: 033507. [67] MENON R, GIL D, BARBASTATHIS G, et al. Photon-sieve lithography[J]. Josa A, 2005, 22(2): 342-345. [68] HUANG K, QIN F, LIU H, et al. Planar diffractive lenses: fundamentals, functionalities, and applications[J]. Advanced Materials (Deerfield Beach, Fla), 2018, 30(26): e1704556. [69] ROGERS E T F, ZHELUDEV N I. Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging[J]. Journal of Optics, 2013, 15(9): 094008. [70] DENNIS M R, HAMILTON A C, COURTIAL J. Superoscillation in speckle patterns[J]. Optics Letters, 2008, 33(24): 2976. [71] BERRY M V, MOISEYEV N. Superoscillations and supershifts in phase space: Wigner and Husimi function interpretations[J]. Journal of Physics A: Mathematical and Theoretical, 2014, 47(31): 315203. [72] BERRY M V, DENNIS M R. Natural superoscillations in monochromatic waves in D dimensions[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(2): 022003. [73] FERREIRA P J S G, KEMPF A. Superoscillations: faster than the nyquist rate[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3732-3740. [74] GAN Z S, CAO Y Y, EVANS R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. [75] GISSIBL T, THIELE S, HERKOMMER A, et al. Two-photon direct laser writing of ultracompact multi-lens objectives[J]. Nature Photonics, 2016, 10(8): 554-560. [76] SHEPPARD C J R. Resolution and super-resolution[J]. Microscopy Research and Technique, 2017, 80(6): 590-598. [77] SHEPPARD C J R, ROTH S, HEINTZMANN R, et al. Interpretation of the optical transfer function: significance for image scanning microscopy[J]. Optics Express, 2016, 24(24): 27280-27287. [78] LIU L B, DIAZ F, WANG L, et al. Superresolution along extended depth of focus with binary-phase filters for the Gaussian beam[J]. Journal of the Optical Society of America A, 2008, 25(8): 2095. [79] CHEN X Z, HUANG L L, MUHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. [80] YUAN G H, ROGERS E T, ZHELUDEV N I. Achromatic super-oscillatory lenses with sub-wavelength focusing[J]. Light, Science & Applications, 2017, 6(9): e17036. [81] ROY T, ROGERS E T F, YUAN G H, et al. Point spread function of the optical needle super-oscillatory lens[J]. Applied Physics Letters, 2014, 104(23): 231109. [82] WANG J M, CHEN W B, ZHAN Q W. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation[J]. Optics Express, 2010, 18(21): 21965-21972. [83] LIN J, YIN K, LI Y D, et al. Achievement of longitudinally polarized focusing with long focal depth by amplitude modulation[J]. Optics Letters, 2011, 36(7): 1185-1187. [84] HU K L, CHEN Z Y, PU J X. Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface[J]. Optics Letters, 2012, 37(16): 3303-3305. [85] CHEN Z, SEGEV M, CHRISTODOULIDES D N. Optical spatial solitons: historical overview and recent advances[J]. Reports on Progress in Physics Physical Society (Great Britain), 2012, 75(8): 086401. [86] LIU Y M, BARTAL G, GENOV D A, et al. Subwavelength discrete solitons in nonlinear metamaterials[J]. Physical Review Letters, 2007, 99(15): 153901. [87] HAN S, XIONG Y, GENOV D, et al. Ray optics at a deep-subwavelength scale: a transformation optics approach[J]. Nano Letters, 2008, 8(12): 4243-4247. [88] HUANG C M, SHI X L, YE F W, et al. Tunneling inhibition for subwavelength light[J]. Optics Letters, 2013, 38(15): 2846-2849. [89] YE F, MIHALACHE D, HU B, et al. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires[J]. Physical Review Letters, 2010, 104(10): 106802. [90] BERRY M V. Exact nonparaxial transmission of subwavelength detail using superoscillations[J]. Journal of Physics A: Mathematical and Theoretical, 2013, 46(20): 205203. [91] BERRY M V, POPESCU S. Evolution of quantum superoscillations and optical superresolution without evanescent waves[J]. Journal of Physics A: Mathematical and General, 2006, 39(22): 6965-6977. [92] AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8: 14992. [93] ZHENG X R, JIA B H, LIN H, et al. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing[J]. Nature Communications, 2015, 6: 8433. [94] CAO G Y, LIN H, FRASER S, et al. Resilient graphene ultrathin flat lens in aerospace, chemical, and biological harsh environments[J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20298-20303. [95] LIN H, XU Z Q, CAO G Y, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light: Science & Applications, 2020, 9: 137. [96] BERESNA M, GECEVICˇIUS M, KAZANSKY P G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass[J]. Optical Materials Express, 2011, 1(4): 783-795. [97] YU A P, CHEN G, ZHANG Z H, et al. Creation of sub-diffraction longitudinally polarized spot by focusing radially polarized light with binary phase lens[J]. Scientific Reports, 2016, 6: 38859. [98] CHEN G, LI Y Y, YU A P, et al. Super-oscillatory focusing of circularly polarized light by ultra-long focal length planar lens based on binary amplitude-phase modulation[J]. Scientific Reports, 2016, 6: 29068. [99] KRAVETS V G, SCHEDIN F, JALIL R, et al. Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection[J]. Nature Materials, 2013, 12(4): 304-309. [100] QIN F, LIU B Q, ZHU L W, et al. Π-phase modulated monolayer supercritical lens[J]. Nature Communications, 2021, 12: 32. [101] CHAPMAN H N, NUGENT K A. Coherent lensless X-ray imaging[J]. Nature Photonics, 2010, 4(12): 833-839. [102] EDER S D, GUO X, KALTENBACHER T, et al. Focusing of a neutral helium beam with a photon-sieve structure[J]. Physical Review A, 2015, 91(4):043608. [103] BARR M, FAHY A, MARTENS J, et al. Unlocking new contrast in a scanning helium microscope[J]. Nature Communications, 2016, 7: 10189. [104] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Visible wavelength planar metalenses based on titanium dioxide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(3): 43-58. [105] LALANNE P, CHAVEL P. Metalenses at visible wavelengths: past, present, perspectives[J]. Laser & Photonics Reviews, 2017, 11(3): 1600295. [106] NI X J, ISHII S, KILDISHEV A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72. [107] ARBABI A, ARBABI E, KAMALI S M, et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations[J]. Nature Communications, 2016, 7: 13682. [108] ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. [109] ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. [110] TANG D L, WANG C T, ZHAO Z Y, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719. [111] YOUNG M. Zone plates and their aberrations[J]. JOSA, 1972, 62(8): 972-976. [112] GROEVER B, CHEN W T, CAPASSO F. Meta-lens doublet in the visible region[J]. Nano Letters, 2017, 17(8): 4902-4907. [113] ENGELBERG J, ZHOU C, MAZURSKI N, et al. Near-IR wide field-of-view Huygens metalens for outdoor imaging applications[J]. 2019: FTh3M.8. [114] SHALAGINOV M Y, AN S, YANG F, et al. Single-element diffraction-limited fisheye metalens[J]. Nano Letters, 2020, 20(10): 7429-7437. [115] HUANG K, LIU H, SI G Y, et al. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms[J]. Laser & Photonics Reviews, 2017, 11(3): 1700025. [116] LI Y, LI X, PU M, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. [117] LIN D M, HOLSTEEN A L, MAGUID E, et al. Photonic multitasking interleaved Si nanoantenna phased array[J]. Nano Letters, 2016, 16(12): 7671-7676. [118] ARBABI E, ARBABI A, KAMALI S M, et al. Multiwavelength metasurfaces through spatial multiplexing[J]. Scientific Reports, 2016, 6: 32803. [119] AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. [120] WANG P, MOHAMMAD N, MENON R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545. [121] WANG S M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8: 187. [122] HSIAO H H, CHEN Y H, LIN R J, et al. Integrated-resonant units: integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation[J]. Advanced Optical Materials, 2018, 6(12): 1870047. [123] ZHOU H P, CHEN L, SHEN F, et al. Broadband achromatic metalens in the midinfrared range[J]. Physical Review Applied, 2019, 11(2): 024066. [124] SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light: Science & Applications, 2018, 7: 85. [125] KHORASANINEJAD M, CHEN W T, ZHU A Y, et al. Multispectral chiral imaging with a metalens[J]. Nano Letters, 2016, 16(7): 4595-4600. [126] ZHU X F, FANG W, LEI J, et al. Supercritical lens array in a centimeter scale patterned with maskless UV lithography[J]. Optics Letters, 2020, 45(7): 1798-1801. |
[1] | 霍广鹏;陈亮维;胡一丁;张晓东;虞澜. 正交晶系单晶标准透射电子衍射斑点图及绘制原理[J]. 人工晶体学报, 2020, 49(7): 1281-1285. |
[2] | 包文秀;那仁巴特尔;包桂芝;香莲. 粉末晶体SrxMg1-xF2(x=0.7,0.9) 原子热振动的研究[J]. 人工晶体学报, 2019, 48(3): 413-417. |
[3] | 徐朝鹏;王倩;张磊;陈飞鸿;王永贞;纪亮亮. 室温核辐射探测材料碘化铟多晶合成及结构分析[J]. 人工晶体学报, 2015, 44(6): 1460-1464. |
[4] | 郝娟;黄文奇;马跃;周广刚;邹湘华;卢贵武. 不同温度下Ga3PO7晶体的声表面波特性研究[J]. 人工晶体学报, 2015, 44(6): 1469-1474. |
[5] | 许斌;张文;郭晓斐;吕美哲;苏海通. 立方氮化硼单晶生长界面层的精细结构[J]. 人工晶体学报, 2015, 44(4): 879-884. |
[6] | 付芬;田亮光;陶金波;程佑法;胡小波;徐现刚. 不同体色淡水养殖珍珠的结构特征研究[J]. 人工晶体学报, 2013, 42(5): 869-874. |
[7] | 杨子;李强;李媛媛;张绍锋. PbLa( ZrSnTi)O3弛豫反铁电单晶的畴结构与成畴机制[J]. 人工晶体学报, 2012, 41(3): 559-563. |
[8] | 兰翠玲;史兵方;陈华妮;黎远成. [Zn(phen)(H_2O)_3SO_4]·H_2O配位聚合物的合成及其晶体结构表征[J]. 人工晶体学报, 2009, 38(6): 1550-1554. |
[9] | 万牡华;欧阳健明. STM、AFM、SEM和TEM对溶液中纳米微粒形貌和粒度分布的检测[J]. 人工晶体学报, 2007, 36(6): 1422-1430. |
[10] | 范建良;郭守国;史凌云;刘学良. 合成镁橄榄石的矿物学研究[J]. 人工晶体学报, 2007, 36(6): 1431-1434. |
[11] | 孙洋;董亚明;陈勇华;陈兆南;谭玲;邹军;周圣明. 新型掺杂LiAlO2晶体衬底研究[J]. 人工晶体学报, 2006, 35(5): 1085-1089. |
[12] | 姚淑华;胡小波;高磊;刘宏;王继扬. 近化学计量比LiNbO3晶体畴结构研究[J]. 人工晶体学报, 2006, 35(1): 119-122. |
[13] | 赵珊茸;孙大亮;郭世义;王继扬;许效红. CMTD晶体的分解过程原子力显微镜实时观测研究[J]. 人工晶体学报, 2005, 34(3): 390-394. |
[14] | 王焕英;宋秀芹. 微波诱导制备纳米氧化锆及其机理研究[J]. 人工晶体学报, 2005, 34(3): 553-556. |
[15] | 朱兴华;赵北君;朱世富;金应荣;赵欣;杨晓龙. 碘化铅(PbI2)单晶体的生长研究[J]. 人工晶体学报, 2005, 34(1): 25-28. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||