[1] LU M H, FENG L, CHEN Y F. Phononic crystals and acoustic metamaterials[J]. Materials Today, 2009, 12(12): 34-42. [2] 黄唯纯,颜士玲,李 鑫,等.关于声学超构材料名词术语的探讨[J].中国材料进展,2021,40(1):1-6+20. HUANG W C, YAN S L, LI X, et al. Discussion on the terminology of acoustic metamaterials[J]. Materials China, 2021, 40(1): 1-6+20(in Chinese). [3] 刘 乐,黄唯纯,钟雨豪,等.声学超构材料技术实用化的进展[J].中国材料进展,2021,40(1):57-68. LIU L, HUANG W C, ZHONG Y H, et al. Progress on the research and applications of acoustic metamaterials[J]. Materials China, 2021, 40(1): 57-68(in Chinese). [4] GE H, YANG M, MA C, et al. Breaking the barriers: advances in acoustic functional materials[J]. National Science Review, 2018, 5(2): 159-182. [5] RUAN J Q, CHEN Y F, LU M H, et al. Metamaterial based on elastic mechanics[J]. Scientia Sinica Technologica, 2014, 44(12): 1261-1270. [6] KOLKEN H M A, ZADPOOR A A. Auxetic mechanical metamaterials[J]. RSC Advances, 2017, 7(9): 5111-5129. [7] TIAN Y, GE H, LU M H, et al. Research advances in acoustic metamaterials[J]. Acta Physica Sinica, 2019, 68(19): 194301. [8] AMBATI M, FANG N, SUN C, et al. Surface resonant states and superlensing in acoustic metamaterials[J]. Physical Review B, 2007, 75(19): 195447. [9] LIU Z. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [10] LEE S H, PARK C M, SEO Y M, et al. Acoustic metamaterial with negative density[J]. Physics Letters A, 2009, 373(48): 4464-4469. [11] HUANG H H, SUN C T. Wave attenuation mechanism in an acoustic metamaterial with negative effective mass density[J]. New Journal of Physics, 2009, 11(1): 013003. [12] CHEN J S, CHIEN I T. Dynamic behavior of a metamaterial beam with embedded membrane-mass structures[J]. Journal of Applied Mechanics, 2017, 84(12): 121007. [13] FANG N, XI D J, XU J Y, et al. Ultrasonic metamaterials with negative modulus[J]. Nature Materials, 2006, 5(6): 452-456. [14] XIA B Z, CHEN N, XIE L X, et al. Temperature-controlled tunable acoustic metamaterial with active band gap and negative bulk modulus[J]. Applied Acoustics, 2016, 112: 1-9. [15] LEE S H, PARK C M, SEO Y M, et al. Composite acoustic medium with simultaneously negative density and modulus[J]. Physical Review Letters, 2010, 104(5): 054301. [16] BRUNET T, MERLIN A, MASCARO B, et al. Soft 3D acoustic metamaterial with negative index[J]. Nature Materials, 2015, 14(4): 384-388. [17] CHENG Y, ZHOU C, YUAN B G, et al. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances[J]. Nature Materials, 2015, 14(10): 1013-1019. [18] KUMAR S, BHUSHAN P, PRAKASH O, et al. Double negative acoustic metastructure for attenuation of acoustic emissions[J]. Applied Physics Letters, 2018, 112(10): 101905. [19] CHEN H J, LI H, ZHAI S L, et al. Ultrasound acoustic metamaterials with double-negative parameters[J]. Journal of Applied Physics, 2016, 119(20): 204902. [20] CAI X B, XIAO J F, ZHANG H K, et al. Compact acoustic double negative metamaterial based on coexisting local resonances[J]. Applied Physics Letters, 2018, 113(24): 244101. [21] LU M H, ZHANG C, FENG L, et al. Negative birefraction of acoustic waves in a sonic crystal[J]. Nature Materials, 2007, 6(10): 744-748. [22] LU M H, LIU X K, FENG L, et al. Extraordinary acoustic transmission through a 1D grating with very narrow apertures[J]. Physical Review Letters, 2007, 99(17): 174301. [23] ESTRADA H, CANDELAS P, URIS A, et al. Extraordinary sound screening in perforated plates[J]. Physical Review Letters, 2008, 101(8): 084302. [24] LI F, CAI F Y, LIU Z Y, et al. Phononic-crystal-based acoustic sieve for tunable manipulations of particles by a highly localized radiation force[J]. Physical Review Applied, 2014, 1(5): 051001. [25] WANG Q, YANG Y, NI X, et al. Acoustic asymmetric transmission based on time-dependent dynamical scattering[J]. Scientific Reports, 2015, 5: 10880. [26] ZIGONEANU L, POPA B I, CUMMER S A. Three-dimensional broadband omnidirectional acoustic ground cloak[J]. Nature Materials, 2014, 13(4): 352-355. [27] CHEN Y, LIU X N, HU G K. Influences of imperfectness and inner constraints on an acoustic cloak with unideal pentamode materials[J]. Journal of Sound and Vibration, 2019, 458: 62-73. [28] ZHANG X L, NI X, LU M H, et al. A feasible approach to achieve acoustic carpet cloak in air[J]. Physics Letters A, 2012, 376(4): 493-496. [29] GOFFAUX C, SÁNCHEZ-DEHESA J, YEYATI A L, et al. Evidence of fano-like interference phenomena in locally resonant materials[J]. Physical Review Letters, 2002, 88(22): 225502. [30] CHEN W J, JIANG S J, CHEN X D, et al. Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide[J]. Nature Communications, 2014, 5: 5782. [31] PILLAI M A, DEENADAYALAN E. A review of acoustic energy harvesting[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(5): 949-965. [32] NGUYEN H, WU Q, XU X C, et al. Broadband acoustic silencer with ventilation based on slit-type Helmholtz resonators[J]. Applied Physics Letters, 2020, 117(13): 134103. [33] KIM S H, LEE S H. Air transparent soundproof window[J]. AIP Advances, 2014, 4(11): 117123. [34] LIU B Y, YANG L. Transmission of low-frequency acoustic waves in seawater piping systems with periodical and adjustable Helmholtz resonator[J]. Journal of Marine Science and Engineering, 2017, 5(4): 56. [35] THEOCHARIS G, RICHOUX O, ROMERO GARCÍA V, et al. Limits of slow sound propagation and transparency in lossy, locally resonant periodic structures[J]. New Journal of Physics, 2014, 16(9): 093017. [36] ZHAO X, CAI L, YU D L, et al. A low frequency acoustic insulator by using the acoustic metasurface to a Helmholtz resonator[J]. AIP Advances, 2017, 7(6): 065211. [37] KUMAR S, XIANG T B, LEE H P. Ventilated acoustic metamaterial window panels for simultaneous noise shielding and air circulation[J]. Applied Acoustics, 2020, 159: 107088. [38] SMITH D R, PENDRY J B, WILTSHIRE M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. [39] YANG Z, MEI J, YANG M, et al. Membrane-type acoustic metamaterial with negative dynamic mass[J]. Physical Review Letters, 2008, 101(20): 204301. [40] SUI N, YAN X, HUANG T Y, et al. A lightweight yet sound-proof honeycomb acoustic metamaterial[J]. Applied Physics Letters, 2015, 106(17): 171905. [41] WANG X L, LUO X D, ZHAO H, et al. Acoustic perfect absorption and broadband insulation achieved by double-zero metamaterials[J]. Applied Physics Letters, 2018, 112(2): 021901. [42] WANG X L, ZHAO H, LUO X D, et al. Membrane-constrained acoustic metamaterials for low frequency sound insulation[J]. Applied Physics Letters, 2016, 108(4): 041905. [43] LU Z B, YU X, LAU S K, et al. Membrane-type acoustic metamaterial with eccentric masses for broadband sound isolation[J]. Applied Acoustics, 2020, 157: 107003. [44] WANG X P, CHEN Y Y, ZHOU G J, et al. Synergetic coupling large-scale plate-type acoustic metamaterial panel for broadband sound insulation[J]. Journal of Sound and Vibration, 2019, 459: 114867. [45] LI Y L, ZHANG Y L, XIE S C. A lightweight multilayer honeycomb membrane-type acoustic metamaterial[J]. Applied Acoustics, 2020, 168: 107427. [46] ANG L Y L, KOH Y K, LEE H P. Broadband sound transmission loss of a large-scale membrane-type acoustic metamaterial for low-frequency noise control[J]. Applied Physics Letters, 2017, 111(4): 041903. [47] JUNG J W, KIM J E, LEE J W. Acoustic metamaterial panel for both fluid passage and broadband soundproofing in the audible frequency range[J]. Applied Physics Letters, 2018, 112(4): 041903. [48] GAO N S, HOU H. Low frequency acoustic properties of a honeycomb-silicone rubber acoustic metamaterial[J]. Modern Physics Letters B, 2017, 31(11): 1750118. [49] LI X, YU S Y, HARRY L, et al. Topological mechanical metamaterials: a brief review[J]. Current Opinion in Solid State and Materials Science, 2020, 24(5): 100853. [50] YU X, LU Z B, LIU T, et al. Sound transmission through a periodic acoustic metamaterial grating[J]. Journal of Sound and Vibration, 2019, 449: 140-156. [51] ZHAO X Z, LIU G Q, ZHANG C, et al. Fractal acoustic metamaterials for transformer noise reduction[J]. Applied Physics Letters, 2018, 113(7): 074101. [52] YANG J, LEE J S, LEE H R, et al. Slow-wave metamaterial open panels for efficient reduction of low-frequency sound transmission[J]. Applied Physics Letters, 2018, 112(9): 091901. [53] GHAFFARIVARDAVAGH R, NIKOLAJCZYK J, ANDERSON S, et al. Ultra-open acoustic metamaterial silencer based on Fano-like interference[J]. Physical Review B, 2019, 99(2): 024302. [54] SUN M, FANG X S, MAO D X, et al. Broadband acoustic ventilation barriers[J]. Physical Review Applied, 2020, 13(4): 044028. [55] MAURYA S K, PANDEY A, SHUKLA S, et al. Double negativity in 3D space coiling metamaterials[J]. Scientific Reports, 2016, 6(1): 1-5. [56] MAN X F, LIU T T, XIA B Z, et al. Space-coiling fractal metamaterial with multi-bandgaps on subwavelength scale[J]. Journal of Sound and Vibration, 2018, 423: 322-339. [57] WANG X N, DE ZHOU Y, SANG J Q, et al. A generalized model for space-coiling resonators[J]. Applied Acoustics, 2020, 158: 107045. [58] ZHANG X D, ZHANG H L, CHEN Z S, et al. Simultaneous realization of large sound insulation and efficient energy harvesting with acoustic metamaterial[J]. Smart Materials and Structures, 2018, 27(10): 105018. [59] ZHANG H, WEI Z, ZHANG X, et al. Tunable acoustic filters assisted by coupling vibrations of a flexible Helmholtz resonator and a waveguide[J]. Applied Physics Letters, 2017, 110(17): 173506. [60] YAMAMOTO T. Acoustic metamaterial plate embedded with Helmholtz resonators for extraordinary sound transmission loss[J]. Journal of Applied Physics, 2018, 123(21): 215110. [61] ANG L Y L, KOH Y K, LEE H P. Plate-type acoustic metamaterial with cavities coupled via an orifice for enhanced sound transmission loss[J]. Applied Physics Letters, 2018, 112(5): 051903. |