[1] UPDIKE S J, HICKS G P. The enzyme electrode[J]. Nature, 1967, 214(5092): 986-988. [2] FANG L X, LIU B, LIU L L, et al. Direct electrochemistry of glucose oxidase immobilized on Au nanoparticles-functionalized 3D hierarchically ZnO nanostructures and its application to bioelectrochemical glucose sensor[J]. Sensors and Actuators B: Chemical, 2016, 222: 1096-1102. [3] SHETTI N P, MALODE S J, NAYAK D S, et al. Novel nanoclay-based electrochemical sensor for highly efficient electrochemical sensing nimesulide[J]. Journal of Physics and Chemistry of Solids, 2020, 137: 109210. [4] MAHMOUD W E, AL-BLUWI S A. Development of ultrasensitive mechanical strain sensor made of 2D-assembled graphene monolayers aligned parallel into polysilicon nanocomposites[J]. Sensors and Actuators A: Physical, 2020, 313: 112166. [5] HAN S S, ZHANG X M, WANG P C, et al. Mechanically robust, highly sensitive and superior cycling performance nanocomposite strain sensors using 3-nm thick graphene platelets[J]. Polymer Testing, 2021, 98: 107178. [6] MOU X, ALI Z, LI S, et al. Applications of magnetic nanoparticles in targeted drug delivery system[J]. Journal of Nanoscience and Nanotechnology, 2015, 15(1): 54-62. [7] ZOU D C, JIN L, WU B, et al. Rapid detection of Salmonella in milk by biofunctionalised magnetic nanoparticle cluster sensor based on nuclear magnetic resonance[J]. International Dairy Journal, 2019, 91: 82-88. [8] BUZALEWICZ I, SUCHWALKO A, KORZEKWA K. The label-free optical biosensor for an automated, ultra-sensitive and highly accurate microorganisms identification[J]. Measurement, 2021, 178: 109408. [9] CHEN Y Y, LIU J C, YANG Z C, et al. Optical biosensors based on refractometric sensing schemes: a review[J]. Biosensors and Bioelectronics, 2019, 144: 111693. [10] SHI J P, REZK A, MA C, et al. Excitation of Bloch surface wave using silver nanoparticles for sensitivity enhanced biosensor[J]. Materials Research Express, 2019, 6(9): 095042. [11] DHANEKAR S, JAIN S. Porous silicon biosensor: current status[J]. Biosensors and Bioelectronics, 2013, 41: 54-64. [12] QU Y, LIAO L, LI Y, et al. Electrically conductive and optically active porous silicon nanowires[J]. Nano Letters, 2009, 9(12): 4539-4543. [13] WEI H Y, ZHANG M, JIA Z H, et al. Detection using a quantum dots/porous silicon optical biosensor based on digital fluorescence images[J]. Sensors and Actuators B: Chemical, 2020, 315: 128108. [14] MASSAD-IVANIR N, SHTENBERG G, ZEIDMAN T, et al. Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria[J]. Advanced Functional Materials, 2010, 20(14): 2269-2277. [15] UHLIR A Jr. Electrolytic shaping of germanium and silicon[J]. Bell System Technical Journal, 1956, 35(2): 333-347. [16] CULLIS A G, CANHAM L T. Visible light emission due to quantum size effects in highly porous crystalline silicon[J]. Nature, 1991, 353(6342): 335-338. [17] DUAN W, JIN Y, CUI Y X, et al. A co-delivery platform for synergistic promotion of angiogenesis based on biodegradable, therapeutic and self-reporting luminescent porous silicon microparticles[J]. Biomaterials, 2021, 272: 120772. [18] TÖLLI M A, FERREIRA M P A, KINNUNEN S M, et al. In vivo biocompatibility of porous silicon biomaterials for drug delivery to the heart[J]. Biomaterials, 2014, 35(29): 8394-8405. [19] ZONG S, WANG L, YANG Z, et al. Black phosphorus-based drug nanocarrier for targeted and synergetic chemophotothermal therapy of acute lymphoblastic leukemia[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5896-5902. [20] MCCALL S L, PLATZMAN P M, WOLFF P A. Surface enhanced Raman scattering[J]. Physics Letters A, 1980, 77(5): 381-383. [21] WACKERLIG J, LIEBERZEIT P A. Molecularly imprinted polymer nanoparticles in chemical sensing: synthesis, characterisation and application[J]. Sensors and Actuators B: Chemical, 2015, 207: 144-157. [22] ZEIRI L L, RECHAV K, PORAT Z, et al. Silver nanoparticles deposited on porous silicon as a surface-enhanced Raman scattering (SERS) active substrate[J]. Applied Spectroscopy, 2012, 66(3): 294-299. [23] OTERO T F, ANGULO E. Electrochemical doping processes in conducting polymers followed by in situ laser electroreflection[J]. Synthetic Metals, 1993, 55(2/3): 1430-1435. [24] CHAN S, KWON S, KOO T W, et al. Surface-enhanced Raman scattering of small molecules from silver-coated silicon nanopores[J]. Advanced Materials, 2003, 15(19): 1595-1598. [25] GIORGIS F, VIRGA A, DESCROVI E, et al. SERS-active substrates based on silvered porous silicon[J]. Physica Status Solidi (c), 2009, 6(7): 1736-1739. [26] GALOPIN E, BARBILLAT J, COFFINIER Y, et al. Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy[J]. ACS Applied Materials & Interfaces, 2009, 1(7): 1396-1403. [27] JABBAR A A, ALWAN A M. Efficient detecting of TNT molecules using palladium nanoparticles/cross shape pores like structure porous silicon[J]. Vibrational Spectroscopy, 2019, 103: 102933. [28] PANARIN A Y, CHIRVONY V S, KHOLOSTOV K I, et al. Formation of SERS-active silver structures on the surface of mesoporous silicon[J]. Journal of Applied Spectroscopy, 2009, 76(2): 280-287. [29] KHALIL I, CHOU C M, TSAI K L, et al. Gold nanofilm-coated porous silicon as surface-enhanced Raman scattering substrate[J]. Applied Sciences, 2019, 9(22): 4806. [30] LIN H H, MOCK J, SMITH D, et al. Surface-enhanced Raman scattering from silver-plated porous silicon[J]. The Journal of Physical Chemistry B, 2004, 108(31): 11654-11659. [31] YE W C, SHEN C M, TIAN J F, et al. Self-assembled synthesis of SERS-active silver dendrites and photoluminescence properties of a thin porous silicon layer[J]. Electrochemistry Communications, 2008, 10(4): 625-629. [32] ZHAO B, LU Y, ZHANG C Y, et al. Silver dendrites decorated filter membrane as highly sensitive and reproducible three dimensional surface enhanced Raman scattering substrates[J]. Applied Surface Science, 2016, 387: 431-436. [33] GE D H, WEI J X, DING J, et al. Silver nano-dendrite-plated porous silicon substrates formed by single-step electrochemical synthesis for surface-enhanced Raman scattering[J]. ACS Applied Nano Materials, 2020, 3(3): 3011-3018. [34] HARRAZ F A, ISMAIL A A, BOUZID H, et al. Surface-enhanced Raman scattering (SERS)-active substrates from silver plated-porous silicon for detection of crystal violet[J]. Applied Surface Science, 2015, 331: 241-247. [35] ROGUSKA A, KUDELSKI A, PISAREK M, et al. Raman investigations of SERS activity of Ag nanoclusters on a TiO2-nanotubes/Ti substrate[J]. Vibrational Spectroscopy, 2011, 55(1): 38-43. [36] DU Y B, SHI L F, HE T C, et al. SERS enhancement dependence on the diameter and aspect ratio of silver-nanowire array fabricated by anodic aluminium oxide template[J]. Applied Surface Science, 2008, 255(5): 1901-1905. [37] DRIDI H, HAJI L, MOADHEN A. Studies of SERS efficiency of gold coated porous silicon formed on rough silicon backside[J]. Applied Surface Science, 2017, 426: 1190-1197. [38] PANARIN A Y, TEREKHOV S N, KHOLOSTOV K I, et al. SERS-active substrates based on n-type porous silicon[J]. Applied Surface Science, 2010, 256(23): 6969-6976. [39] GE M Y, RONG J P, FANG X, et al. Porous doped silicon nanowires for lithium ion battery anode with long cycle life[J]. Nano Letters, 2012, 12(5): 2318-2323. [40] HUANG Z P, GEYER N, WERNER P, et al. Metal-assisted chemical etching of silicon: a review[J]. Advanced Materials, 2011, 23(2): 285-308. [41] BANDARENKA H, GIREL K, ZAVATSKI S, et al. Progress in the development of SERS-active substrates based on metal-coated porous silicon[J]. Materials, 2018, 11(5): 852. [42] ALSAMMARRAIE F K, LIN M S. Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of Agricultural and Food Chemistry, 2017, 65(3): 666-674. [43] VERMA A K, SONI R K. Silver nanodendrites for ultralow detection of thiram based on surface-enhanced Raman spectroscopy[J]. Nanotechnology, 2019, 30(38): 385502. [44] WALI L A, HASAN K K, ALWAN A M. Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 206: 31-36. [45] REN X H, YANG L, LI Y C, et al. The integration of molecular imprinting and surface-enhanced Raman scattering for highly sensitive detection of lysozyme biomarker aided by density functional theory[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 228: 117764. [46] WANG K Q, SUN D W, PU H B, et al. Two-dimensional Au@Ag nanodot array for sensing dual-fungicides in fruit juices with surface-enhanced Raman spectroscopy technique[J]. Food Chemistry, 2020, 310: 125923. [47] WANG Z L, ZONG S F, WANG Y J, et al. Screening and multiple detection of cancer exosomes using an SERS-based method[J]. Nanoscale, 2018, 10(19): 9053-9062. [48] RUAN H M, WU X X, YANG C C, et al. A supersensitive CTC analysis system based on triangular silver nanoprisms and SPION with function of capture, enrichment, detection, and release[J]. ACS Biomaterials Science & Engineering, 2018, 4(3): 1073-1082. [49] WANG Y J, ZONG S F, LI N, et al. SERS-based dynamic monitoring of minimal residual disease markers with high sensitivity for clinical applications[J]. Nanoscale, 2019, 11(5): 2460-2467. |