[1] CASTELVECCHI D. Quantum computers ready to leap out of the lab in 2017[J]. Nature, 2017, 541(7635): 9-10. [2] SHIELDS, ANDREW J. Semiconductor quantum light sources[J]. Nature Photonics, 2007, 1(4): 215-223. [3] LYTVYN P M, MAZUR Y I, BENAMARA M, et al. Temperature driven three-dimensional ordering of InGaAs/GaAs quantum dot superlattices grown under As2 gas flux[J]. Applied Surface Science, 2014, 305: 689-696. [4] LEDENTSOV N N. Quantum dot laser[J]. Semiconductor Science and Technology, 2011, 26(1): 014001. [5] 张之桓,丁 召,王 一,等.AlGaAs插入层对InAs/AlGaAs/GaAs量子点的尺寸分布影响[J].贵州大学学报(自然科学版),2018,35(3):39-43. ZHANG Z H, DING Z, WANG Y, et al. The effect of AlGaAs cladding layer on size distribution of InAs/AlGaAs/GaAs quantum dots[J]. Journal of Guizhou University (Natural Sciences), 2018, 35(3): 39-43(in Chinese). [6] MICHLER P. Quantum dots for quantum information technologies[M]. Cham: Springer International Publishing, 2017. [7] AKOPIAN N, LINDNER N H, POEM E, et al. Entangled photon pairs from semiconductor quantum dots[J]. Physical Review Letters, 2006, 96(13): 130501. [8] KLOEFFEL C, LOSS D. Prospects for spin-based quantum computing in quantum dots[J]. Annual Review of Condensed Matter Physics, 2013, 4(1): 51-81. [9] RAU M, HEINDEL T, UNSLEBER S, et al. Free space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources: a proof of principle experiment[J]. New Journal of Physics, 2014, 16(4): 043003. [10] KOGUCHI N, TAKAHASHI S, CHIKYOW T. New MBE growth method for InSb quantum well boxes[J]. Journal of Crystal Growth, 1991, 111(1/2/3/4): 688-692. [11] STOCK E, WARMING T, OSTAPENKO I, et al. Single-photon emission from InGaAs quantum dots grown on (111) GaAs[J]. Applied Physics Letters, 2010, 96(9): 093112. [12] HA N, MANO T, KURODA T, et al. Current-injection quantum-entangled-pair emitter using droplet epitaxial quantum dots on GaAs(111)A[J]. Applied Physics Letters, 2019, 115(8): 083106. [13] YU P, WU J, GAO L, et al. InGaAs and GaAs quantum dot solar cells grown by droplet epitaxy[J]. Solar Energy Materials and Solar Cells, 2017, 161: 377-381. [14] AHMAD KAMARUDIN M, HAYNE M, ZHUANG Q D, et al. GaSb quantum dot morphology for different growth temperatures and the dissolution effect of the GaAs capping layer[J]. Journal of Physics D: Applied Physics, 2010, 43(6): 065402. [15] LABELLA V P, BULLOCK D W, EMERY C, et al. Enabling electron diffraction as a tool for determining substrate temperature and surface morphology[J]. Applied Physics Letters, 2001, 79(19): 3065-3067. [16] VOORHEES P W. The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985, 38(1/2): 231-252. [17] Schmidt O. Lateral aligment of epitaxial quantum dots[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. [18] VENABLES J A, PERSAUD R, METCALFE F L, et al. Rate and diffusion analyses of surface processes[J]. Journal of Physics and Chemistry of Solids, 1994, 55(10): 955-964. [19] VOOK R W. Nucleation and growth of thin films[J]. Optical Engineering, 1984, 23(3): 343-349. [20] WALTON D. Nucleation of vapor deposits[J]. The Journal of Chemical Physics, 1962, 37(10): 2182-2188. [21] KIRAVITTAYA S, RASTELLI A, SCHMIDT O G. Advanced quantum dot configurations[J]. Reports on Progress in Physics, 2009, 72(4): 046502. |