[1] 何选盟,李伟杰,朱振峰,等.溶剂热合成介孔氧化硅负载纳米硫化镉光催化剂及其光催化性能研究[J].人工晶体学报,2015,44(11):3051-3055. HE X M, LI W J, ZHU Z F, et al. Photocatalystic performance and preparation of mesoporous silica supported nano-CdS photocatalyst by solvothermal method[J]. Journal of Synthetic Crystals, 2015, 44(11): 3051-3055(in Chinese). [2] WU X J, XIE S J, LIU C X, et al. Ligand-controlled photocatalysis of CdS quantum dots for lignin valorization under visible light[J]. ACS Catalysis, 2019, 9(9): 8443-8451. [3] SHANG L, TONG B, YU H J, et al. CdS nanoparticle-decorated Cd nanosheets for efficient visible light-driven photocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2016, 6(3): 1501241. [4] SHI R, CAO Y H, BAO Y J, et al. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution[J]. Advanced Materials, 2017, 29(27): 1700803. [5] FU X L, HU Y F, ZHANG T, et al. The role of ball milled h-BN in the enhanced photocatalytic activity: a study based on the model of ZnO[J]. Applied Surface Science, 2013, 280: 828-835. [6] LIU G D, JI S L, YIN L L, et al. Visible-light-driven photocatalysts: (La/Bi+N)-codoped NaNbO3 by first principles[J]. Journal of Applied Physics, 2011, 109(6): 063103. [7] MODAK B, MODAK P, GHOSH S. Improving visible light photocatalytic activity of NaNbO3: a DFT based investigation[J]. RSC Advances, 2016, 2016(6): 90188-90196. [8] WANG G Z, CHEN H, WU G, et al. Hybrid density functional study on mono- and codoped NaNbO3 for visible-light photocatalysis[J]. ChemPhysChem, 2016, 17(4): 489-499. [9] 曾 斌,曾武军,刘万锋.绿色合成石墨烯负载硫化铜/硫化镉多级纳米球及在水污染处理中的应用[J].人工晶体学报,2019,48(10):1907-1911. ZENG B, ZENG W J, LIU W F. Green synthesis of graphene-CuS/Cd S hierarchical nanospheres and its application in the water treatment[J]. Journal of Synthetic Crystals, 2019, 48(10): 1907-1911(in Chinese). [10] GAMAGE M J, ZHANG Z S. Synthesis and characterization of magnetically separable Ag/AgCl-magnetic activated carbon composites for visible light induced photocatalytic detoxification and disinfection[J]. Applied Catalysis B: Environmental, 2014, 160/161: 267-278. [11] ROHANI B T, AHMADPOUR A, AHMADI H F. Synthesis of Fe3O4/Bi2WO6 nanohybrid for the photocatalytic degradation of pharmaceutical ibuprofen under solar light[J]. Journal of Industrial and Engineering Chemistry, 2017, 51: 244-254. [12] 王佳玮.钨酸铋/纳米洋葱碳复合材料的合成及其光催化和电化学性能的研究[D].太原:太原理工大学,2019. WANG J W. Preparation, photocatalystic and electrochemical performance of Bi2WO6/carbon nano Onions composites[D]. Taiyuan: Taiyuan University of Technology, 2019(in Chinese). [13] LIU F Z, SHAO X, WANG J Q, et al. Solvothermal synthesis of graphene-CdS nanocomposites for highly efficient visible-light photocatalyst[J]. Journal of Alloys and Compounds, 2013, 551: 327-332. [14] UGARTE D. Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature, 1992, 359(6397): 707-709. [15] 高泽宇,王佳玮,梁 颖,等.纳米洋葱碳的制备及其微波吸收特性研究FeYO3/Y2O3∶1% Eu3 +,1% Tb3+粉体的制备及其磁性研究[J].人工晶体学报,2018,47(12):2567-2572. GAO Z Y, WANG J W, LIANG Y, et al. Fabrication and microwave absorption properties of carbon nano onions[J]. Journal of Synthetic Crystals, 2018, 47(12): 2567-2572(in Chinese). [16] KROTO H W, MCKAY K. The formation of quasi-icosahedral spiral shell carbon particles[J]. Nature, 1988, 331(6154): 328-331. [17] JIANG S, HU Q, XU M Y, et al. Crystalline CdS/MoS2 shape-controlled by a bacterial cellulose scaffold for enhanced photocatalytic hydrogen evolution[J]. Carbohydrate Polymers, 2020, 250: 116909. [18] SOLER-ILLIA G, LOUIS A, SANCHEZ C. Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly[J]. Chemistry of Materials, 2002, 14(2): 750-759. [19] SHI S H, WAN G P, WU L H, et al. Ultrathin manganese oxide nanosheets uniformly coating on carbon nanocoils as high-performance asymmetric supercapacitor electrodes[J]. Journal of Colloid and Interface Science, 2019, 537: 142-150. [20] REDDY C V, SHIM J, CHO M. Synthesis, structural, optical and photocatalytic properties of CdS/ZnS core/shell nanoparticles[J]. Journal of Physics and Chemistry of Solids, 2017, 103: 209-217. [21] XU Y, FU Z C, CAO S, et al. Highly selective oxidation of sulfides on a CdS/C3N4 catalyst with dioxygen under visible-light irradiation[J]. Catalysis Science & Technology, 2017, 7(3): 587-595. [22] 郎 笛.硫化镉光催化材料的制备及其可见光催化性能研究[D].武汉:华中农业大学,2016. LANG D. Preparation and visible-light photocatalytic performance of cds-based photocatalytic materials[D]. Wuhan: Huazhong Agricultural University, 2016(in Chinese). [23] OU M, ZHONG Q, ZHANG S L, et al. Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase[J]. Journal of Alloys and Compounds, 2015, 626: 401-409. [24] AN G M, MA W H, SUN Z Y, et al. Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation[J]. Carbon, 2007, 45(9): 1795-1801. [25] ALLISON D A, JOHANSSON G, ALLAN C J, et al. Molecular spectroscopy by means of ESCA: V. Boron compounds[J]. Journal of Electron Spectroscopy and Related Phenomena, 1972, 1(3): 269-283. [26] HÖGBERG H, LAI C C, BROITMAN E, et al. Reactive sputtering of CSx thin solid films using CS2 as precursor[J]. Vacuum, 2020, 182: 109775. [27] LI P P, CAO Y, MAO C J, et al. TiO2/g-C3N4/CdS nanocomposite-based photoelectrochemical biosensor for ultrasensitive evaluation of T4 polynucleotide kinase activity[J]. Analytical Chemistry, 2019, 91(2): 1563-1570. [28] ZHONG R Y, ZHANG Z S, YI H Q, et al. Covalently bonded 2D/2D O-g-C3N4/TiO2 heterojunction for enhanced visible-light photocatalytic hydrogen evolution[J]. Applied Catalysis B: Environmental, 2018, 237: 1130-1138. [29] CHU J Y, HAN X J, YU Z, et al. Highly efficient visible-light-driven photocatalytic hydrogen production on CdS/Cu7S4/g-C3N4 ternary heterostructures[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20404-20411. [30] TAHIR M, AMIN N S. Photocatalytic reduction of carbon dioxide with water vapors over montmorillonite modified TiO2 nanocomposites[J]. Applied Catalysis B: Environmental, 2013, 142/143: 512-522. [31] YUAN X, SUN M, YAO Y, et al. N/Ti3+-codoped triphasic TiO2/g-C3N4 heterojunctions as visible-light photocatalysts for the degradation of organic contaminants[J]. New Journal of Chemistry, 2019, 43: 2665-2675. [32] LI Z, PAN X, YI Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts [J]. Journal of Materials Chemistry A, 2019, 7(2): 469-475. [33] XIA J X, DI J, YIN S, et al. Facile fabrication of the visible-light-driven Bi2WO6/BiOBr composite with enhanced photocatalytic activity [J]. Rsc Advances, 2013, 4: 82-90. [34] HUO Y, CHEN X, ZHANG J, et al. Ordered macroporous Bi2O3/TiO2 film coated on a rotating disk with enhanced photocatalytic activity under visible irradiation [J]. Applied Catalysis B Environmental, 2014, 148-149: 550-556. [35] DI J, XIA J X, YIN S, et al. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants[J]. Journal of Materials Chemistry A, 2014, 2(15): 5340. [36] FU H B, ZHANG S C, XU T G, et al. Photocatalytic degradation of RhB by fluorinated Bi2WO6 and distributions of the intermediate products[J]. Environmental Science & Technology, 2008, 42(6): 2085-2091. [37] LIU S W, YIN K, REN W S, et al. Tandem photocatalytic oxidation of Rhodamine B over surface fluorinated bismuth vanadate crystals[J]. Journal of Materials Chemistry, 2012, 22(34): 17759. [38] DADIGALA R, BANDI R, GANGAPURAM B R, et al. Construction of in situ self-assembled FeWO4/g-C3N4 nanosheet heterostructured Z-scheme photocatalysts for enhanced photocatalytic degradation of rhodamine B and tetracycline[J]. Nanoscale Advances, 2019, 1(1): 322-333. [39] JANANI R, MENON S S, BHALERAO G, et al. Zn1-xGaxO1-yNy-graphene oxide nanocomposite for enhanced visible-light photocatalytic activity[J]. Dyes and Pigments, 2019, 165: 249-255. [40] LIDDELL P A, KUCIAUSKAS D, SUMIDA J P, et al. Photoinduced charge separation and charge recombination to a triplet state in a carotene-porphyrin-fullerene triad[J]. Journal of the American Chemical Society, 1997, 119(6): 1400-1405. [41] YU J G, DAI G P, HUANG B B. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/TiO2 nanotube arrays[J]. The Journal of Physical Chemistry C, 2009, 113(37): 16394-16401. [42] LI G Y, NIE X, CHEN J Y, et al. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach[J]. Water Research, 2015, 86: 17-24. [43] MA J Z, WANG C X, HE H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light[J]. Applied Catalysis B: Environmental, 2016, 184: 28-34. |