[1] CAMPBELL I D, GOPALAKRISHNAN K, MARINESCU M, et al. Optimising lithium-ion cell design for plug-in hybrid and battery electric vehicles[J]. Journal of Energy Storage, 2019, 22: 228-238. [2] LIU H, LIU X X, LI W, et al. Porous carbon composites for next generation rechargeable lithium batteries[J]. Advanced Energy Materials, 2017, 7(24): 1700283. [3] ROJAEE R, SHAHBAZIAN-YASSAR R. Two-dimensional materials to address the lithium battery challenges[J]. ACS Nano, 2020, 14(3): 2628-2658. [4] SUN L Y, YANG L, LI J, et al. Superior full-cell cycling and rate performance achieved by carbon coated hollow Fe3O4 nanoellipsoids for lithium ion battery[J]. Electrochimica Acta, 2018, 288: 71-81. [5] LI J B, LI Z H, NING F Y, et al. Ultrathin mesoporous Co3O4 nanosheet arrays for high-performance lithium-ion batteries[J]. ACS Omega, 2018, 3(2): 1675-1683. [6] ZHANG M, WANG T, CAO G. Promises and challenges of tin-based compounds as anode materials for lithium-ion batteries[J]. International Materials Reviews, 2015, 60(6): 330-352. [7] ZHOU D, SONG W L, FAN L Z. Hollow core-shell SnO2/C fibers as highly stable anodes for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2015, 7(38): 21472-21478. [8] YANG L, DAI T, WANG Y C, et al. Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties[J]. Nano Energy, 2016, 30: 885-891. [9] WANG F, SONG X P, YAO G, et al. Carbon-coated mesoporous SnO2 nanospheres as anode material for lithium ion batteries[J]. Scripta Materialia, 2012, 66(8): 562-565. [10] DING J J, LU Z P, WU M M, et al. Carbon coated SnO2 particles stabilized in the elastic network of carbon nanofibers and its improved electrochemical properties[J]. Materials Chemistry and Physics, 2018, 215: 285-292. [11] LIU Y, JIAO Y, ZHANG Z L, et al. Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications[J]. ACS Applied Materials & Interfaces, 2014, 6(3): 2174-2184. [12] SOME S, KIM Y, YOON Y, et al. High-quality reduced graphene oxide by a dual-function chemical reduction and healing process[J]. Scientific Reports, 2013, 3: 1929. [13] ZHAO Y, LI Y, MA C L, et al. Micro-/nano-structured hybrid of exfoliated graphite and Co3O4 nanoparticles as high-performance anode material for Li-ion batteries[J]. Electrochimica Acta, 2016, 213: 98-106. [14] 黄茹婷.新型二氧化锡基纳米复合材料的制备、表征及可见光催化性能研究[D].上海:上海大学,2019. HUANG R T. Preparation, characterization and photocatalytic activity of novel tin oxide nanocomposites[D]. Shanghai: Shanghai University, 2019(in Chinese). [15] DU Y C, HUANG L J, WANG Y X, et al. Preparation of graphene oxide/silica hybrid composite membranes and performance studies in water treatment[J]. Journal of Materials Science, 2020, 55(25): 11188-11202. [16] LI Y, HE X M, ZHAO Y, et al. A solvothermal induced self-assembling of SnO2/exfoliated graphite composite with enhanced lithium storage performances[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(10): 9715-9724. [17] JENA P, NARESH N, SATYANARAYANA N, et al. Electrochemical performance of SnO2 rods and SnO2/rGO, SnO2/MWCNTs composite materials as an anode for lithium-ion battery application-A comparative study[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(6): 7619-7629. [18] ZHANG Y Q, MA Q, WANG S L, et al. Poly(vinyl alcohol)-assisted fabrication of hollow carbon spheres/reduced graphene oxide nanocomposites for high-performance lithium-ion battery anodes[J]. ACS Nano, 2018, 12(5): 4824-4834. [19] NOWAK A P. Composites of tin oxide and different carbonaceous materials as negative electrodes in lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2018, 22(8): 2297-2304. [20] GAO M X, CHEN X, PAN H G, et al. Ultrafine SnO2 dispersed carbon matrix composites derived by a sol-gel method as anode materials for lithium ion batteries[J]. Electrochimica Acta, 2010, 55(28): 9067-9074. [21] ZHANG B, XU Z L, HE Y B, et al. Exceptional rate performance of functionalized carbon nanofiber anodes containing nanopores created by (Fe) sacrificial catalyst[J]. Nano Energy, 2014, 4: 88-96. |