[1] 姚 焯,曲殿利,郭玉香,等.一步合成法制备双金属有机骨架材料及其低温选择性脱硝催化性能[J].人工晶体学报,2019,48(4):682-686+692. YAO Z, QU D L, GUO Y X, et al. Bimetal MOFs synthesized by one-step synthesize method and its catalytic performance for low-temperature selective catalytic reduction[J]. Journal of Synthetic Crystals, 2019, 48(4): 682-686+692(in Chinese). [2] 刘 纳,何 峰,谢峻林,等.Fe掺杂Mn/TiO2低温脱硝催化剂的催化性能研究[J].人工晶体学报,2017,46(3):490-494+500. LIU N, HE F, XIE J L, et al. Catalytic performance of Fe-doped Mn/TiO2 catalysts for low-temperature denitration[J]. Journal of Synthetic Crystals, 2017, 46(3): 490-494+500(in Chinese). [3] HAN L, CAI S, GAO M, et al. Selective catalytic reduction of NOx with NH3 by using novel catalysts: state of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. [4] HAN L P, GAO M, FENG C, et al. Fe2O3-CeO2@Al2O3 nanoarrays on Al-mesh as SO2-tolerant monolith catalysts for NOx reduction by NH3[J]. Environmental Science & Technology, 2019, 53(10): 5946-5956. [5] LIU J, MEEPRASERT J, NAMUANGRUK S, et al. Facet-activity relationship of TiO2 in Fe2O3/TiO2 nanocatalysts for selective catalytic reduction of NO with NH3: in situ DRIFTs and DFT studies[J]. The Journal of Physical Chemistry C, 2017, 121(9): 4970-4979. [6] YANG S J, LIU C X, CHANG H Z, et al. Improvement of the activity of γ-Fe2O3 for the selective catalytic reduction of NO with NH3 at high temperatures: no reduction versus NH3 oxidization[J]. Industrial & Engineering Chemistry Research, 2013, 52(16): 5601-5610. [7] MOU X L, ZHANG B S, LI Y, et al. Rod-shaped Fe2O3 as an efficient catalyst for the selective reduction of nitrogen oxide by ammonia[J]. Angewandte Chemie International Edition, 2012, 51(12): 2989-2993. [8] QU W Y, CHEN Y X, HUANG Z W, et al. Active tetrahedral iron sites of γ-Fe2O3 catalyzing NO reduction by NH3[J]. Environmental Science & Technology Letters, 2017, 4(6): 246-250. [9] YANG S J, WANG C Z, CHEN J H, et al. A novel magnetic Fe-Ti-V spinel catalyst for the selective catalytic reduction of NO with NH3 in a broad temperature range[J]. Catalysis Science & Technology, 2012, 2(5): 915. [10] ZHANG P, LI D Y. Selective catalytic reduction of NO with NH3 over iron-vanadium mixed oxide catalyst[J]. Catalysis Letters, 2014, 144(5): 959-963. [11] MU J C, LI X Y, SUN W B, et al. Inductive effect boosting catalytic performance of advanced Fe1-xVxOδ catalysts in low-temperature NH3 selective catalytic reduction: insight into the structure, interaction, and mechanisms[J]. ACS Catalysis, 2018, 8(8): 6760-6774. [12] ZHAO W, DOU S P, ZHANG K, et al. Promotion effect of S and N co-addition on the catalytic performance of V2O5/TiO2 for NH3-SCR of NOX[J]. Chemical Engineering Journal, 2019, 364: 401-409. [13] LIU F D, HE H, LIAN Z H, et al. Highly dispersed iron vanadate catalyst supported on TiO2 for the selective catalytic reduction of NOx with NH3[J]. Journal of Catalysis, 2013, 307: 340-351. [14] OLSEN B K, KÜGLER F, CASTELLINO F, et al. Poisoning of vanadia based SCR catalysts by potassium: influence of catalyst composition and potassium mobility[J]. Catalysis Science & Technology, 2016, 6(7): 2249-2260. [15] CAI S X, XU T Y, WANG P L, et al. Self-protected CeO2-SnO2@SO42-/TiO2 catalysts with extraordinary resistance to alkali and heavy metals for NOx reduction[J]. Environmental Science & Technology, 2020, 54(19): 12752-12760. [16] PENG Y, LI J, CHEN L, et al. Alkali metal poisoning of a CeO2-WO3 catalyst used in the selective catalytic reduction of NOx with NH3: an experimental and theoretical study[J]. Environmental Science & Technology, 2012, 46(5): 2864-2869. [17] PENG Y, LI J H, HUANG X, et al. Deactivation mechanism of potassium on the V2O5/CeO2 catalysts for SCR reaction: acidity, reducibility and adsorbed-NOx[J]. Environmental Science & Technology, 2014, 48(8): 4515-4520. [18] NUGUID R J G, FERRI D, MARBERGER A, et al. Modulated excitation Raman spectroscopy of V2O5/TiO2: mechanistic insights into the selective catalytic reduction of NO with NH3[J]. ACS Catalysis, 2019, 9(8): 6814-6820. [19] ROUTRAY K, ZHOU W, KIELY C J, et al. Catalysis science of methanol oxidation over iron vanadate catalysts: nature of the catalytic active sites[J]. ACS Catalysis, 2011, 1(1): 54-66. [20] REDDY B M, KHAN A, YAMADA Y, et al. Structural characterization of CeO2-TiO2 and V2O5/CeO2-TiO2 catalysts by Raman and XPS techniques[J]. The Journal of Physical Chemistry B, 2003, 107(22): 5162-5167. [21] NAGARAJU P, SRILAKSHMI C, PASHA N, et al. Effect of P/Fe ratio on the structure and ammoxidation functionality of Fe-P-O catalysts[J]. Applied Catalysis A: General, 2008, 334(1/2): 10-19. [22] SANTHOSH KUMAR M, SCHWIDDER M, GRÜNERT W, et al. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content: part Ⅱ. Assessing the function of different Fe sites by spectroscopic in situ studies[J]. Journal of Catalysis, 2006, 239(1): 173-186. [23] ZHOU, G, MAITARAD P, WANG P, et al. Alkali-resistant NOx reduction over SCR catalysts via boosting NH3 adsorption rates by in-situ constructing the sacrificed sites[J]. Environmental Science & Technology, 2020, 54(20): 13314-13321. [24] LIU F, HE H. Structure-activity relationship of iron titanate catalysts in the selective catalytic reduction of NOx with NH3[J]. Journal of Physical. Chemistry C, 2010, 114: 16929-16936. [25] WU G X, LI J, FANG Z T, et al. FeVO4 nanorods supported TiO2 as a superior catalyst for NH3-SCR reaction in a broad temperature range[J]. Catalysis Communications, 2015, 64: 75-79. [26] DONG G J, ZHANG Y F, ZHAO Y, et al. Effect of the pH value of precursor solution on the catalytic performance of V2O5-WO3/TiO2 in the low temperature NH3-SCR of NOx[J]. Journal of Fuel Chemistry and Technology, 2014, 42(12): 1455-1463. |