[1] 李玉坤,许志远,曹 洁,等.耐高温宽带吸波超材料的设计及实验研究[J].武汉理工大学学报,2018,40(8):1-7. LI Y K, XU Z Y, CAO J, et al. Design and experimental investigation of high temperature broad band metamaterial microwave absorber[J]. Journal of Wuhan University of Technology, 2018, 40(8): 1-7(in Chinese). [2] 高振桓,杨乐馨,巩秀芳,等.Mar-M247高温合金900 ℃下的氧化行为研究[J].特种铸造及有色合金,2021,41(2):147-152. GAO Z H, YANG L X, GONG X F, et al. Oxidation behaviour of mar-M247 super alloy at 900 ℃[J]. Special Casting & Nonferrous Alloys, 2021, 41(2): 147-152(in Chinese). [3] 田南焱.TiB2/La0.1Sr0.9TiO3陶瓷的低温烧结及热电性能[D].哈尔滨:哈尔滨工业大学,2020. TIAN N Y. Low temperature sintering and thermoelectric properties of TiB2/La0.1Sr0.9TiO3 ceramics[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese). [4] 张雨葳.W复合La0.1Sr0.9TiO3陶瓷的制备及热电性能研究[D].哈尔滨:哈尔滨工业大学,2019. ZHANG Y W. Preparation and thermoelectric properties of W-added La0.1Sr0.9TiO3 ceramics[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese). [5] CONSTANTINESCU G, RASEKH S, AMIRKHIZI P, et al. Exploring the high-temperature electrical performance of Ca3-xLaxCo4O9 thermoelectric ceramics for moderate and low substitution levels[J]. Symmetry, 2021, 13(05):782-782. [6] 张小珍,张王林,索帅峰,等.烧成温度对La0.7Ca0.3CrO3/Al2O3导电陶瓷微滤膜支撑体结构与性能的影响[J].人工晶体学报,2016,45(4):980-985. ZHANG X Z, ZHANG W L, SUO S F, et al. Influences of sintering temperature on structure and properties of porous La0.7Ca0.3CrO3/Al2O3 support for conductive ceramic MF membranes[J]. Journal of Synthetic Crystals, 2016, 45(4): 980-985(in Chinese). [7] JING R Y, JIN L, TIAN Y, et al. Bi(Mg0.5Ti0.5)O3-doped NaNbO3 ferroelectric ceramics: linear regulation of Curie temperature and ultra-high thermally stable dielectric response[J]. Ceramics International, 2019, 45(17): 21175-21182. [8] 吴亚丽,岳彩霞,金 宏.纳米Sb2Se3掺杂PZT铁电陶瓷材料的热电性能[J].粉末冶金工业,2021,31(1):82-85. WU Y L, YUE C X, JIN H. Study of thermoelectric properties of nanocrystalline Sb2Se3 doped PZT ferroelectric ceramics[J]. Powder Metallurgy Industry, 2021, 31(1): 82-85(in Chinese). [9] MA J, WANG C Z, HUANG B X, et al.Degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by sol-gel method[J]. Materials Technology, 2021, 36(07): 420-429. [10] LEE H, CALIARI F, SAMPATH S. Thermoelectric properties of plasma sprayed of calcium cobaltite (Ca2Co2O5)[J]. Journal of the European Ceramic Society, 2019, 39(13): 3749-3755. [11] YU J C, CHANG Y B, JAKUBCZYK E, et al. Modulation of electrical transport in calcium cobaltite ceramics and thick films through microstructure control and doping[J]. Journal of the European Ceramic Society, 2021, 41(9): 4859-4869. [12] BOCHMANN A, REIMANN T, SCHULZ T, et al. Transverse thermoelectric multilayer generator with bismuth-substituted calcium cobaltite: design optimization through variation of tilt angle[J]. Journal of the European Ceramic Society, 2019, 39(9): 2923-2929. [13] RAJA ANNAMALAI A, RAVI TEJA P, AGRAWAL D K, et al. Microwave heating synthesis and thermoelectric property characterization of highly dense Ca3Co4O9 bulk[J]. Ceramics International, 2020, 46(11): 17951-17956. [14] 李 霄.烧结技术对Ca3Co4O9热电陶瓷织构度和电学性能的影响[D].成都:西南交通大学,2019. LI X. Effect of sintering techniques on the texture degree and electrical properties of Ca3Co4O9 thermoelectric ceramics[D]. Chengdu: Southwest Jiaotong University, 2019(in Chinese). |