[1] WEBER M J. Scintillation: mechanisms and new crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 527(1/2): 9-14. [2] MENGE P R, GAUTIER G, ILTIS A, et al. Performance of large lanthanum bromide scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 579(1): 6-10. [3] SAKAI E J. Recent measurements on scintillator-photodetector systems[J]. IEEE Transactions on Nuclear Science, 1987, 34(1): 418-422. [4] SHIRWADKAR U, VAN LOEF E V D, HAWRAMI R, et al. New promising scintillators for gamma-ray spectroscopy: Cs(Ba, Sr)(Br, I)3[C]//2011 IEEE Nuclear Science Symposium Conference Record. October 23-29, 2011, Valencia, Spain. IEEE, 2011: 1583-1585. [5] RAY D, CLARK C, PHAM H Q, et al. Computational study of structural and electronic properties of lead-free CsMI3 perovskites (M=Ge, Sn, Pb, Mg, Ca, Sr, and Ba)[J]. The Journal of Physical Chemistry C, 2018, 122(14): 7838-7848. [6] RICCARDI R, SINISTRI C, CAMPARI G Y, et al. Binary systems formed by alkali bromides with barium or strontium bromide[J]. Zeitschrift Für Naturforschung A, 1970, 25(5): 781-785. [7] http://www.crct.polymtl.ca/fact/documentation/#opennewwindow. [8] YANG K, ZHURAVLEVA M, MELCHER C L. Crystal growth and characterization of CsSr1-xEuxI3 high light yield scintillators[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2011, 5(1): 43-45. [9] WU Y T, GOKHALE S S, LINDSEY A C, et al. Toward high energy resolution in CsSrI3/Eu2+ scintillating crystals: effects of off-stoichiometry and Eu2+ concentration[J]. Crystal Growth & Design, 2016, 16(12): 7186-7193. [10] YAO Q, LIU L T, DONG W M, et al. High-speed growth of CsSr1-xEuxI3 (x=0.03, 0.05, 0.07) single crystals by the edge-defined film-fed growth method[J]. Optical Materials Express, 2019, 9(12): 4742. [11] SCHILLING G, MEYER G. Ternare bromide und iodide zweiwertiger lanthanide und ihre erdalkali-analoga vom typ AMX3 und AM2X5[J]. Zeitschrift für Anorganische Und Allgemeine Chemie, 1996, 622(5): 759-765. [12] ZHURAVLEVA M, FRIEDRICH S, MELCHER C L. The europium oxidation state in CsSrI3∶Eu scintillators measured by X-ray absorption spectroscopy[J]. Optical Materials, 2014, 36(3): 670-674. [13] STAND L, ZHURAVLEVA M, CHAKOUMAKOS B, et al. Characterization of mixed halide scintillators: CsSrBrI2∶Eu, CsCaBrI2∶Eu and CsSrClBr2∶Eu[J]. Journal of Luminescence, 2019, 207: 70-77. [14] WEI H, ZHURAVLEVA M, YANG K, et al. Effect of Ba substitution in CsSrI3∶Eu2+[J]. Journal of Crystal Growth, 2013, 384: 27-32. [15] ALEKHIN M S, DE HAAS J T M, KRAMER K W, et al. Scintillation properties of and self absorption in SrI2∶Eu2+[J]. IEEE Transactions on Nuclear Science, 2011, 58(5): 2519-2527. [16] SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallographica Section A, 1976, 32(5): 751-767. [17] PERRY G S, MOODY K N. CsCl-CaCl2 phase diagram[J]. Thermochimica Acta, 1992, 198(1): 167-172. [18] SEIFERT H J, LANGENBACH U. Thermoanalytische und röntgenographische untersuchungen an systemen alkalichlorid/calciumchlorid[J]. Zeitschrift Für Anorganische Und Allgemeine Chemie, 1969, 368(1/2): 36-43. [19] Pearson’s Crystal Data, Data sheet #557921, ASM International, 2011. [20] BEURER E, GRIMM J, GERNER P, et al. Absorption, light emission, and upconversion properties of Tm2+-doped CsCaI3 and RbCaI3[J]. Inorganic Chemistry, 2006, 45(24): 9901-9906. [21] Pearson’s Crystal Data, Data sheet #1711755, ASM International, 2010. [22] LINDSEY A, MCALEXANDER W, STAND L, et al. Crystal growth and spectroscopic performance of large crystalline boules of CsCaI3∶Eu scintillator[J]. Journal of Crystal Growth, 2015, 427: 42-47. [23] ZHURAVLEVA M, BLALOCK B, YANG K, et al. New single crystal scintillators: CsCaCl3∶Eu and CsCaI3∶Eu[J]. Journal of Crystal Growth, 2012, 352(1): 115-119. [24] TYAGI M, ZHURAVLEVA M, MELCHER C L. Theoretical and experimental characterization of promising new scintillators: Eu2+ doped CsCaCl3 and CsCaI3[J]. Journal of Applied Physics, 2013, 113(20): 203504. [25] LAVAL M, MOSZYN'SKI M, ALLEMAND R, et al. Barium fluoride:inorganic scintillator for subnanosecond timing[J]. Nuclear Instruments and Methods in Physics Research, 1983, 206(1/2): 169-176. [26] KOSHIMIZU M, YAHABA N, HARUKI R, et al. Scintillation and luminescence properties of a single CsCaCl3 crystal[J]. Optical Materials, 2014, 36(12): 1930-1933. [27] GRIPPA A Y, REBROVA N V, GORBACHEVA T E, et al. Crystal growth and scintillation properties of CsCaBr3∶Eu2+(CsCa1-xEuxBr3, 0≤x≤0.08)[J]. Journal of Crystal Growth, 2013, 371: 112-116. [28] Loyd S M. The development of cesium calcium Bromo-Iodide scintillator for X-ray and gamma ray detection[D]. Knoxville: University of Tennessee, 2017. [29] REBROVA N V, GRIPPA A Y, PUSHAK A S, et al. Scintillation properties of a large diameter CsCaBr3∶5%Eu2+ crystal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 927: 214-218. [30] BAO X H, CHEN N Y, LU W C, et al. Phase diagram of the CsBr-CaBr2 system[J]. Rare Metals, 2006, 25(3): 293-296. [31] FUJIMOTO Y, SAEKI K, TANAKA H, et al. Photoluminescence and radiation response properties of Ce3+-doped CsCaCl3 crystalline scintillator[J]. Physica Scripta, 2016, 91(9): 094002. [32] MIZOI K, ARAI M, FUJIMOTO Y, et al. Photoluminescence and scintillation properties of Yb2+-doped ACaCl3 (A=Cs, Rb, K) crystals[J]. Journal of Luminescence, 2020, 227: 117521. [33] REBROVA N V, GRIPPA A Y, GORBACHEVA T E, et al. Scintillation properties of Eu2+-activated CsCaCl3-xBrx (x=1, 1.5, 2)[J]. Journal of Luminescence, 2017, 182: 172-176. [34] ROWE E, TUPITSYN E, WIGGINS B, et al. Double salts iodide scintillators: cesium Barium iodide, cesium calcium iodide, and Barium bromine iodide[J]. Crystal Research and Technology, 2013, 48(4): 227-235. [35] LOYD M, LINDSEY A, STAND L, et al. Tuning the structure of CsCaI3∶Eu via substitution of bromine for iodine[J]. Optical Materials, 2017, 68: 47-52. [36] REBROVA N V, GRIPPA A Y, BOIARYNTSEVA I A, et al. Crystal growth and characterization of Eu2+ doped Cs1-xRbxCaBr3[J]. Journal of Alloys and Compounds, 2020, 816: 152594. [37] REBROVA N V, GRIPPA A Y, BOIARYNTSEVA I A, et al. Effects of europium concentration on luminescent and scintillation performance of Cs0.2Rb0.8Ca1-xEuxBr3 (0≤x≤ 0.08) crystals[J]. Journal of Rare Earths, 2020 [38] LOYD M, LINDSEY A, WU Y T, et al. Growth of large size (≥38 mm diameter) KCaI3∶Eu scintillator crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 914: 8-14. [39] LINDSEY A C, ZHURAVLEVA M, WU Y T, et al. Effects of increasing size and changing europium activator concentration in KCaI3 scintillator crystals[J]. Journal of Crystal Growth, 2016, 449: 96-103. [40] DORENBOS P. (INVITED) The quest for high resolution γ-ray scintillators[J]. Optical Materials: X, 2019, 1: 100021. [41] STAND L, ZHURAVLEVA M, LINDSEY A, et al. Growth and characterization of potassium strontium iodide: a new high light yield scintillator with 2.4% energy resolution[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 780: 40-44. [42] STAND L, ZHURAVLEVA M, CHAKOUMAKOS B, et al. Scintillation properties of Eu2+-doped KBa2I5 and K2BaI4[J]. Journal of Luminescence, 2016, 169: 301-307. [43] STAND L, ZHURAVLEVA M, JOHNSON J, et al. Gamma-ray spectroscopic characterization of long, rapidly-grown KSr2I5∶Eu crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 962: 163700. [44] WU Y T, ZHURAVLEVA M, LINDSEY A C, et al. Eu2+ concentration effects in KCa0.8Sr0.2I3∶Eu2+: a novel high-performance scintillator[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2016, 820: 132-140. |