人工晶体学报 ›› 2021, Vol. 50 ›› Issue (10): 1830-1843.
覃皓明, 申南南, 何亦辉
收稿日期:
2021-08-27
出版日期:
2021-10-15
发布日期:
2021-11-24
通讯作者:
何亦辉,博士,教授。E-mail:yhhe@suda.edu.cn
作者简介:
覃皓明(1996—),男,广西省人,科研助理。E-mail:hmqin@suda.edu.cn。何亦辉(1987—),苏州大学教授,博士生导师。主要从事新型室温辐射半导体材料与器件研究。本科和博士均毕业于西北工业大学,师从介万奇教授。2015年4月至2019年3月在美国西北大学进行博士后研究;2019年4月至2021年2月在美国西北大学任研究助理教授。近十年来一直致力于室温核辐射探测领域的应用及开发研究,首次实现了熔体法钙钛矿的高能量分辨率伽马射线响应;首次证实半导体探测器可以直接转化热中子并分辨出热中子俘获峰;首次研制了单极性空穴型CsPbBr3单晶探测器,对662 keV的能量分辨率达1.4%。以第一/共同一作发表文章十余篇,包括Nature、Nature Photonics、Nature Communications等。研究成果多次被《科技日报》,美国《化学化工新闻》(C&EN)等媒体专题报道。获得了国际光学工程学会SPIE青年研究者奖(2018),IEEE核与等离子体学会(NPSS)的辐射仪器青年科学家奖(2021),高层次人才1项。
基金资助:
QIN Haoming, SHEN Nannan, HE Yihui
Received:
2021-08-27
Online:
2021-10-15
Published:
2021-11-24
摘要: 钙钛矿材料在太阳能电池和光电探测等领域的快速发展,带动了其在核辐射探测领域的应用研究。钙钛矿晶体结构拥有多样化的结构容忍性,如何设计组分并挖掘材料的相关特性具有很大的科学挑战。其次,针对新型钙钛矿材料特性,需要根据应用场景来优化半导体器件设计,才能最大限度地发挥其辐射探测性能。鉴于此,本文从熔体法晶体生长及半导体器件设计等角度,探讨了不同维度钙钛矿结构的材料特性及辐射探测器件性能,以期为该材料在核辐射探测领域的发展提供参考。
中图分类号:
覃皓明, 申南南, 何亦辉. 熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J]. 人工晶体学报, 2021, 50(10): 1830-1843.
QIN Haoming, SHEN Nannan, HE Yihui. Research Progress on the Melt-Grown Inorganic Perovskite Semiconductor Single Crystals and Devices for Nuclear Radiation Detection[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(10): 1830-1843.
[1] 张廷克,李闽榕,潘启龙.中国核能发展报告2020[M].北京:社会科学文献出版社,2020. ZHANG T K, LI M E, PAN Q L. China nuclear energy development report 2020[M]. Beijing: Social Science Literature Press, 2020(in Chinese). [2] 中国核能行业协会.中国核能年鉴2020年卷[M]. 北京:中国原子能出版社,2020. China Nuclear Energy Industry Association. China nuclear energy yearbook 2020 volume[M]. Beijing: China Atomic Energy Press, 2020(in Chinese). [3] SORENSON J A, PHELPS M E, BROWNELL G L. Physics in nuclear medicine[J]. Physics Today, 1982, 35(5): 85. [4] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [5] LI G Q, JIE W Q, HUA H, et al. Cd1-xZnxTe: Growth and characterization of crystals for X-ray and gamma-ray detectors[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 46(3): 85-104. [6] BUTLER J F, LINGREN C L, DOTY F P. Cd1-x/ZnxTe gamma ray detectors[J]. IEEE Transactions on Nuclear Science, 1992, 39(4): 605-609. [7] ROSE G. De novis quibusdam fossilibus quae in montibus uraliis inveniuntur[M]. AG Schadii, 1839. [8] YE H Y, TANG Y Y, LI P F, et al. Metal-free three-dimensional perovskite ferroelectrics[J]. Science, 2018, 361(6398): 151-155. [9] ZHENG T, WU J G, XIAO D Q, et al. Recent development in lead-free perovskite piezoelectric bulk materials[J]. Progress in Materials Science, 2018, 98: 552-624. [10] DONG H, ZHANG C, LIU X, et al. Materials chemistry and engineering in metal halide perovskite lasers[J]. Chemical Society Reviews, 2020, 49(3): 951-982. [11] PARK N G. Perovskite solar cells: an emerging photovoltaic technology[J]. Materials Today, 2015, 18(2): 65-72. [12] LEE Y, KWON J, HWANG E, et al. High-performance perovskite-graphene hybrid photodetector[J]. Advanced Materials, 2015, 27(1): 41-46. [13] STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection[J]. Crystal Growth & Design, 2013, 13(7): 2722-2727. [14] KAKAVELAKIS G, GEDDA M, PANAGIOTOPOULOS A, et al. Metal halide perovskites for high-energy radiation detection[J]. Advanced Science, 2020, 7(22): 2002098. [15] WEI H, HUANG J. Halide lead perovskites for ionizing radiation detection[J]. Nat Commun, 2019, 10(1): 1066. [16] WU H D, GE Y S, NIU G D, et al. Metal halide perovskites for X-ray detection and imaging[J]. Matter, 2021, 4(1): 144-163. [17] KANG J, WANG L W. High defect tolerance in lead halide perovskite CsPbBr3[J]. The Journal of Physical Chemistry Letters, 2017, 8(2): 489-493. [18] YAKUNIN S, SYTNYK M, KRIEGNER D, et al. Detection of X-ray photons by solution-processed lead halide perovskites[J]. Nature Photonics, 2015, 9(7): 444-449. [19] HE Y H, KE W J, ALEXANDER G C B, et al. Resolving the energy of γ-ray photons with MAPbI3 single crystals[J]. ACS Photonics, 2018, 5(10): 4132-4138. [20] LIANG J, WANG C X, WANG Y R, et al. All-inorganic perovskite solar cells[J]. Journal of the American Chemical Society, 2016, 138(49): 15829-15832. [21] 介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(S1):24-35. JIE W Q. Progress of Bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(S1): 24-35(in Chinese). [22] 杨 帆,王 涛,周伯儒,等.室温核辐射探测器用碲锌镉晶体生长研究进展[J].人工晶体学报,2020,49(4):561-569. YANG F, WANG T, ZHOU B R, et al. Research progress on CdZnTe crystal growth for room temperature radiation detection applications[J]. Journal of Synthetic Crystals, 2020, 49(4): 561-569(in Chinese). [23] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596. [24] GOLDSCHMIDT V M. Die gesetze der krystallochemie[J]. Naturwissenschaften, 1926, 14(21): 477-485. [25] ZHAO Y, ZHU K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications[J]. Chemical Society Reviews, 2016, 45(3): 655-689. [26] KIESLICH G, SUN S, CHEETHAM A K. An extended tolerance factor approach for organic-inorganic perovskites[J]. Chemical Science, 2015, 6(6): 3430-3433. [27] AMAT A, MOSCONI E, RONCA E, et al. Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting[J]. Nano Letters, 2014, 14(6): 3608-3616. [28] ZHANG F, LU H P, TONG J H, et al. Advances in two-dimensional organic-inorganic hybrid perovskites[J]. Energy & Environmental Science, 2020, 13(4): 1154-1186. [29] KIM B, SEOK S I. Molecular aspects of organic cations affecting the humidity stability of perovskites[J]. Energy & Environmental Science, 2020, 13(3): 805-820. [30] LIAO J F, RAO H S, CHEN B X, et al. Dimension engineering on cesium lead iodide for efficient and stable perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5(5): 2066-2072. [31] WANG Y G, ZHANG H, ZHU J L, et al. Antiperovskites with exceptional functionalities[J]. Advanced Materials, 2020, 32(7): 1905007. [32] ZHOU C K, LIN H R, HE Q Q, et al. Low dimensional metal halide perovskites and hybrids[J]. Materials Science and Engineering: R: Reports, 2019, 137: 38-65. [33] MØLLER C K. Crystal structure and photoconductivity of cæsium plumbohalides[J]. Nature, 1958, 182(4647): 1436. [34] LI J, YU Q, HE Y, et al. Cs2PbI2Cl2, all-inorganic two-dimensional ruddlesden-popper mixed halide perovskite with optoelectronic response[J]. Journal of the American Chemical Society, 2018, 140(35): 11085-11090. [35] HE Y H, STOUMPOS C C, HADAR I, et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. Journal of the American Chemical Society, 2021, 143(4): 2068-2077. [36] LIN W W, HE J G, MCCALL K M, et al. Inorganic halide perovskitoid TlPbI3 for ionizing radiation detection[J]. Advanced Functional Materials, 2021, 31(13): 2006635. [37] SUN Q H, XU Y D, ZHANG H J, et al. Optical and electronic anisotropies in perovskitoid crystals of Cs3Bi2I9 studies of nuclear radiation detection[J]. Journal of Materials Chemistry A, 2018, 6(46): 23388-23395. [38] MCCALL K M, STOUMPOS C C, KOSTINA S S, et al. Strong electron-phonon coupling and self-trapped excitons in the defect halide perovskites A3M2I9 (A=Cs, Rb; M=Bi, Sb)[J]. Chemistry of Materials, 2017, 29(9): 4129-4145. [39] LI X, DU X Y, ZHANG P, et al. Lead-free halide perovskite Cs3Bi2Br9 single crystals for high-performance X-ray detection[J]. Science China Materials, 2021, 64(6): 1427-1436. [40] MCCALL K M, STOUMPOS C C, KONTSEVOI O Y, et al. From 0D Cs3Bi2I9 to 2D Cs3Bi2I6Cl3: dimensional expansion induces a direct band gap but enhances electron-phonon coupling[J]. Chemistry of Materials, 2019, 31(7): 2644-2650. [41] XIAO B, WANG F B, XU M, et al. Melt-grown large-sized Cs2TeI6 crystals for X-ray detection[J]. CrystEngComm, 2020, 22(31): 5130-5136. [42] LIN W W, STOUMPOS C C, LIU Z F, et al. TlSn2I5, a robust halide antiperovskite semiconductor for γ-ray detection at room temperature[J]. ACS Photonics, 2017, 4(7): 1805-1813. [43] LI H, MENG F, MALLIAKAS C D, et al. Mercury chalcohalide semiconductor Hg3Se2Br2 for hard radiation detection[J]. Crystal Growth & Design, 2016, 16(11): 6446-6453. [44] SONG J Z, CUI Q Z, LI J H, et al. Ultralarge all-inorganic perovskite bulk single crystal for high-performance visible-infrared dual-modal photodetectors[J]. Advanced Optical Materials, 2017, 5(12): 1700157. [45] ZHANG M Z, ZHENG Z P, FU Q Y, et al. Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals[J]. CrystEngComm, 2017, 19(45): 6797-6803. [46] XU J Y, LIANG X X, JIN M, et al. Growth and characterization of all-inorganic perovskite CsPbBr3 crystal by a traveling zone melting method[J]. Journal of Inorganic Materials, 2018, 33(11): 1253. [47] ZHANG P, ZHANG G, LIU L, et al. Anisotropic optoelectronic properties of melt-grown bulk CsPbBr3 single crystal[J]. The Journal of Physical Chemistry Letters, 2018, 9(17): 5040-5046. [48] ZHANG P, SUN Q H, XU Y D, et al. Enhancing carrier transport properties of melt-grown CsPbBr3 single crystals by eliminating inclusions[J]. Crystal Growth & Design, 2020, 20(4): 2424-2431. [49] HE Y H, LIU Z F, MCCALL K M, et al. Perovskite CsPbBr3 single crystal detector for alpha-particle spectroscopy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2019, 922: 217-221. [50] MCCALL K M, FRIEDRICH D, CHICA D G, et al. Perovskites with a twist: strong In1+ off-centering in the mixed-valent CsInX3 (X=Cl, Br)[J]. Chemistry of Materials, 2019, 31(22): 9554-9566. [51] LI J W, STOUMPOS C C, TRIMARCHI G G, et al. Air-stable direct bandgap perovskite semiconductors: all-inorganic tin-based heteroleptic halides AxSnClyIz (A=Cs, Rb)[J]. Chemistry of Materials, 2018, 30(14): 4847-4856. [52] STOEGER W. The crystal structures of TlPbI3 and Tl4PbI6[J]. Zeitschrift Für Naturforschung B, 1977, 32(9): 975-981. [53] KOCSIS M. Proposal for a new room temperature X-ray detector-thallium lead iodide[J]. IEEE Transactions on Nuclear Science, 2000, 47(6): 1945-1947. [54] HITOMI K, ONODERA T, SHOJI T, et al. Thallium lead iodide radiation detectors[J]. IEEE Transactions on Nuclear Science, 2003, 50(4): 1039-1042. [55] YANG G, PHAN Q V, LIU M, et al. Material defect study of thallium lead iodide (TlPbI3) crystals for radiation detector applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 954: 161516. [56] MCCALL K M, LIU Z F, TRIMARCHI G, et al. Α-particle detection and charge transport characteristics in the A3M2I9 defect perovskites (A=Cs, Rb; M=Bi, Sb)[J]. ACS Photonics, 2018, 5(9): 3748-3762. [57] ISHII M, KOBAYASHI M. Single crystals for radiation detectors[J]. Progress in Crystal Growth and Characterization of Materials, 1992, 23: 245-311. [58] HANY I, YANG G, PHAN Q V, et al. Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: electrical and optical characterization for gamma radiation detection[J]. Materials Science in Semiconductor Processing, 2021, 121: 105392. [59] TAKAHASHI T, WATANABE S. Recent progress in CdTe and CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2001, 48(4): 950-959. [60] JOHNSEN S, LIU Z F, PETERS J A, et al. Thallium Chalcohalides for X-ray and γ-ray Detection[J]. Journal of the American Chemical Society, 2011, 133(26): 10030-10033. [61] HE Y, KONTSEVOI O Y, STOUMPOS C C, et al. Defect antiperovskite compounds Hg3Q2I2 (Q=S, Se, and Te) for room-temperature hard radiation detection[J]. Journal of the American Chemical Society, 2017, 139(23): 7939-7951. [62] HE Y H, MATEI L, JUNG H J, et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals[J]. Nature Communications, 2018, 9: 1609. [63] HE Y H, PETRYK M, LIU Z F, et al. CsPbBr3 perovskite detectors with 1.4% energy resolution for high-energy γ-rays[J]. Nature Photonics, 2021, 15(1): 36-42. [64] CHEN H, AWADALLA S A, HARRIS F, et al. Spectral response of THM grown CdZnTe crystals[J]. IEEE Transactions on Nuclear Science, 2008, 55(3): 1567-1572. [65] MCGREGOR D S, HERMON H. Room-temperature compound semiconductor radiation detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1997, 395(1): 101-124. [66] JANG J, JI S, GRANDHI G K, et al. Multimodal digital X-ray scanners with synchronous mapping of tactile pressure distributions using perovskites[J]. Advanced Materials, 2021, 33(30): 2008539. [67] OU X Y, QIN X, HUANG B L, et al. High-resolution X-ray luminescence extension imaging[J]. Nature, 2021, 590(7846): 410-415. [68] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging[J]. Nature, 2017, 550(7674): 87-91. [69] FÖRSTER A, BRANDSTETTER S, SCHULZE-BRIESE C. Transforming X-ray detection with hybrid photon counting detectors[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 377(2147): 20180241. [70] PROKESCH M, SOLDNER S A, SUNDARAM A G, et al. CdZnTe detectors operating at X-ray fluxes of 100 million photons /(mm2·s) [J]. IEEE Transactions on Nuclear Science, 2016, 63(3): 1854-1859. [71] HE Z. Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 463(1/2): 250-267. [72] 陈伯显,张 智.核辐射物理及探测学[M]. 哈尔滨:哈尔滨工程大学出版社,2011. CHEN B X, ZHANG Z. Nuclear radiation physics and detection[M]. Harbin: Harbin Engineering University Press, 2011(in Chinese). |
[1] | 王涛, 贾志泰, 李阳, 张健, 陶绪堂. 单晶光纤制备及高温传感器研究进展[J]. 人工晶体学报, 2021, 50(9): 1603-1624. |
[2] | 王维, 黄鸣, 常晓鱼, 张昊, 吴奇, 龙连春. 改进型单晶炉提拉系统偏心平衡研究[J]. 人工晶体学报, 2021, 50(9): 1774-1779. |
[3] | 林光伟, 王珊, 张西亚, 高俊伟, 高德东. 直拉单晶炉加热系统的优化设计与分析[J]. 人工晶体学报, 2021, 50(8): 1541-1551. |
[4] | 张西亚, 高德东, 王珊, 林光伟, 高俊伟. 基于数据驱动的晶体直径模型辨识方法研究[J]. 人工晶体学报, 2021, 50(8): 1552-1561. |
[5] | 罗昊, 张序清, 杨德仁, 皮孝东. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. |
[6] | 徐杰, 宋青松, 刘坚, 丁雨憧, 李东振, 徐晓东, 徐军. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能[J]. 人工晶体学报, 2021, 50(7): 1391-1396. |
[7] | 陈晨, 赵堃, 韩焕鹏. 6英寸低位错锗单晶生长热场设计[J]. 人工晶体学报, 2021, 50(6): 979-986. |
[8] | 张西亚, 高德东, 王珊, 彭鑫, 林光伟, 高俊伟. 热屏下降式单晶炉设计与研究[J]. 人工晶体学报, 2021, 50(6): 987-995. |
[9] | 张嘉华, 康桥, 黄仕华. 十二烷基苯磺酸钠与聚乙烯吡咯烷酮复配表面活性剂对单晶硅制绒的影响[J]. 人工晶体学报, 2021, 50(6): 1096-1103. |
[10] | 罗豪甦, 焦杰, 陈瑞, 朱荣峰, 张章, 徐嘉林, 赵静, 王西安, 林迪, 陈建伟, 狄文宁, 鲁丽, 朱莉莉. 弛豫铁电单晶的多功能特性及其器件应用[J]. 人工晶体学报, 2021, 50(5): 783-802. |
[11] | 綦正超, 许庭翔, 刘学超, 王丁. 杂质和缺陷对SiC单晶导热性能的影响[J]. 人工晶体学报, 2021, 50(5): 816-824. |
[12] | 葛梦然, 毕文波. 单晶硅低裂纹损伤切片加工技术研究进展[J]. 人工晶体学报, 2021, 50(5): 967-973. |
[13] | 蒋金科, 崔双月, 刘阳, 陶绪堂. 熔体法生长大尺寸有机晶体[J]. 人工晶体学报, 2021, 50(4): 603-618. |
[14] | 彭燕, 陈秀芳, 谢雪健, 徐现刚, 胡小波, 杨祥龙, 于国建, 王垚浩. 半绝缘碳化硅单晶衬底的研究进展[J]. 人工晶体学报, 2021, 50(4): 619-628. |
[15] | 刘宏, 桑元华, 孙德辉, 王东周, 王继扬. 信息时代的铌酸锂晶体:进展与展望[J]. 人工晶体学报, 2021, 50(4): 708-715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||