[1] AGUIRRE C I, REGUERA E, STEIN A. Tunable colors in opals and inverse opal photonic crystals[J]. Advanced Functional Materials, 2010, 20(16): 2565-2578. [2] GE J P, YIN Y D. Responsive photonic crystals[J]. Angewandte Chemie International Edition, 2011, 50(7): 1492-1522. [3] 姜澄溢,刘浩楠,张富宝,等.光子晶体在太阳能电池中的应用[J].人工晶体学报,2018,47(2):292-296. JIANG C Y, LIU H N, ZHANG F B, et al. Application of photonic crystal in solar cells[J]. Journal of Synthetic Crystals, 2018, 47(2): 292-296(in Chinese). [4] KARAYILAN M, CLAMEN L, BECKER M L. Polymeric materials for eye surface and intraocular applications[J]. Biomacromolecules, 2021, 22(2): 223-261. [5] JONES L, HUI A, PHAN C M, et al. CLEAR - Contact lens technologies of the future[J]. Contact Lens and Anterior Eye, 2021, 44(2): 398-430. [6] DENNYSON SAVARIRAJ A, SALIH A, ALAM F, et al. Ophthalmic sensors and drug delivery[J]. ACS Sensors, 2021, 6(6): 2046-2076. [7] MOREDDU R, VIGOLO D, YETISEN A K. Contact lens technology: from fundamentals to applications[J]. Advanced Healthcare Materials, 2019, 8(15): 1900368. [8] LIAO Y T, YAO H F, LINGLEY A, et al. A 3 μm CMOS glucose sensor for wireless contact-lens tear glucose monitoring[J]. IEEE Journal of Solid-State Circuits, 2012, 47(1): 335-344. [9] YAO H, LIAO Y, LINGLEY A R, et al. A contact lens with integrated telecommunication circuit and sensors for wireless and continuous tear glucose monitoring[J]. Journal of Micromechanics and Microengineering, 2012, 22(7): 075007. [10] LU W, ASHER S A, MENG Z H, et al. Visual detection of 2, 4, 6-trinitrotolune by molecularly imprinted colloidal array photonic crystal[J]. Journal of Hazardous Materials, 2016, 316: 87-93. [11] FENZL C, HIRSCH T, WOLFBEIS O S. Photonic crystals for chemical sensing and biosensing[J]. Angewandte Chemie International Edition, 2014, 53(13): 3318-3335. [12] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987,58(20):2059-2062. [13] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. [14] 吴 攀,汪长春.刺激响应性聚合物光子晶体研究进展[J].高分子通报,2019(1):83-93. WU P, WANG C C. Recent advances in stimuli responsive polymer photonic crystals[J]. Polymer Bulletin, 2019(1): 83-93(in Chinese). [15] 刘晨辉,刘根起,秦夏彤,等.光子晶体水凝胶检测金属离子的研究进展[J].高分子通报,2019(10):139-148. LIU C H, LIU G Q, QIN X T, et al. Development of photonic crystal hydrogel for detecting metal ions[J]. Polymer Bulletin, 2019(10): 139-148(in Chinese). [16] ZHANG Q, SERPE M, MUGO S. Stimuli responsive polymer-based 3D optical crystals for sensing[J]. Polymers, 2017, 9(12): 436. [17] MUSGRAVE C S A, FANG F Z. Contact lens materials: a materials science perspective[J]. Materials, 2019, 12(2): 261. [18] KHARAGHANI D, DUTTA D, GITIGARD P, et al. Development of antibacterial contact lenses containing metallic nanoparticles[J]. Polymer Testing, 2019, 79: 106034. [19] XIAO A, DHAND C, LEUNG C M, et al. Strategies to design antimicrobial contact lenses and contact lens cases[J]. Journal of Materials Chemistry B, 2018, 6(15): 2171-2186. [20] DOMSCHKE A, MARCH W F, KABILAN S, et al. Initial clinical testing of a holographic non-invasive contact lens glucose sensor[J]. Diabetes Technology & Therapeutics, 2006, 8(1): 89-93. [21] XIE Z Y, LI L L, LIU P M, et al. Self-assembled coffee-ring colloidal crystals for structurally colored contact lenses[J]. Small, 2015, 11(8): 926-930. [22] LIU P M, XIE Z Y, ZHENG F Y, et al. Surfactant-free HEMA crystal colloidal paint for structural color contact lens[J]. Journal of Materials Chemistry B, 2016, 4(31): 5222-5227. [23] ELSHAARANI T, YU H J, WANG L, et al. Synthesis of hydrogel-bearing phenylboronic acid moieties and their applications in glucose sensing and insulin delivery[J]. Journal of Materials Chemistry B, 2018, 6(23): 3831-3854. [24] JIA S Y, TANG Z, GUAN Y, et al. Order-disorder transition in doped microgel colloidal crystals and its application for optical sensing[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14254-14258. [25] TANG W W, CHEN C. Hydrogel-based colloidal photonic crystal devices for glucose sensing[J]. Polymers, 2020, 12(3): 625. [26] HU Y M, JIANG X M, ZHANG L Y, et al. Construction of near-infrared photonic crystal glucose-sensing materials for ratiometric sensing of glucose in tears[J]. Biosensors and Bioelectronics, 2013, 48: 94-99. [27] ALEXEEV V L, DAS S, FINEGOLD D N, et al. Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid[J]. Clinical Chemistry, 2004, 50(12): 2353-2360. [28] ALEXEEV V L, SHARMA A C, GOPONENKO A V, et al. High ionic strength glucose-sensing photonic crystal[J]. Analytical Chemistry, 2003, 75(10): 2316-2323. [29] DAS S, ALEXEEV V L, SHARMA A C, et al. Synthesis and crystal structure of 4-amino-3-fluorophenylboronic acid[J]. Tetrahedron Letters, 2003, 44(42): 7719-7722. [30] RUAN J L, CHEN C, SHEN J H, et al. A gelated colloidal crystal attached lens for noninvasive continuous monitoring of tear glucose[J]. Polymers, 2017, 9(12): 125. [31] CHEN C, DONG Z Q, SHEN J H, et al. 2D photonic crystal hydrogel sensor for tear glucose monitoring[J]. ACS Omega, 2018, 3(3): 3211-3217. [32] ELSHERIF M, HASSAN M U, YETISEN A K, et al. Wearable contact lens biosensors for continuous glucose monitoring using smartphones[J]. ACS Nano, 2018, 12(6): 5452-5462. [33] ZHAI Z M, CHENG Y Y, HONG J X. Nanomedicines for the treatment of glaucoma: current status and future perspectives[J]. Acta Biomaterialia, 2021, 125: 41-56. [34] MOSAED S, LIU J H K, WEINREB R N. Correlation between office and peak nocturnal intraocular pressures in healthy subjects and glaucoma patients[J]. American Journal of Ophthalmology, 2005, 139(2): 320-324. [35] CHEN G Z, CHAN I S, LAM D C C. Capacitive contact lens sensor for continuous non-invasive intraocular pressure monitoring[J]. Sensors and Actuators A: Physical, 2013, 203: 112-118. [36] CHEN G Z, CHAN I S, LEUNG L K K, et al. Soft wearable contact lens sensor for continuous intraocular pressure monitoring[J]. Medical Engineering & Physics, 2014, 36(9): 1134-1139. [37] WANG Y L, ZHAO Q L, DU X M. Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring[J]. Journal of Materials Chemistry B, 2020, 8(16): 3519-3526. [38] MAENG B, CHANG H K, PARK J. Photonic crystal-based smart contact lens for continuous intraocular pressure monitoring[J]. Lab on a Chip, 2020, 20(10): 1740-1750. [39] XU J W, XUE Y Y, HU G Y, et al. A comprehensive review on contact lens for ophthalmic drug delivery[J]. Journal of Controlled Release, 2018, 281: 97-118. [40] WHITE C J, TIEPPO A, BYRNE M E. Controlled drug release from contact lenses: a comprehensive review from 1965-present[J]. Journal of Drug Delivery Science and Technology, 2011, 21(5): 369-384. [41] HSU K H, GAUSE S, CHAUHAN A. Review of ophthalmic drug delivery by contact lenses[J]. Journal of Drug Delivery Science and Technology, 2014, 24(2): 123-135. [42] CHOI S, KIM J. Therapeutic contact lenses with polymeric vehicles for ocular drug delivery: a review[J]. Materials, 2018, 11(7): 1125. [43] ZHANG X J, CAO X Z, QI P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges[J]. Journal of Biomaterials Science, Polymer Edition, 2020, 31(4): 549-560. [44] LIU P M, CHEN J L, ZHANG Z X, et al. Bio-inspired robust non-iridescent structural color with self-adhesive amorphous colloidal particle arrays[J]. Nanoscale, 2018, 10(8): 3673-3679. [45] LIU P M, SHENG T, XIE Z Y, et al. Robust, highly visible, and facile bioconjugation colloidal crystal beads for bioassay[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29378-29384. [46] LIU P M, BAI L, YANG J J, et al. Self-assembled colloidal arrays for structural color[J]. Nanoscale Advances, 2019, 1(5): 1672-1685. [47] DENG J Z, CHEN S, CHEN J L, et al. Self-reporting colorimetric analysis of drug release by molecular imprinted structural color contact lens[J]. ACS Applied Materials & Interfaces, 2018, 10(40): 34611-34617. [48] GU H C, ZHAO Y J, CHENG Y, et al. Tailoring colloidal photonic crystals with wide viewing angles[J]. Small, 2013, 9(13): 2266-2271. [49] GAUSE S, CHAUHAN A. Nanoparticle-loaded UV-blocking contact lenses[J]. Journal of Applied Polymer Science, 2015, 132(37): 42495. [50] 深圳先进技术研究院.一种结构色太阳隐形眼镜及其制备方法:中国,CN107463001A[P]. 2017-12-12 Shenzhen Institute of Advanced Technology. A solar contact lens with structural color and its preparation method: China, CN107463001A[P]. 2017-12-12(in Chinese). [51] LAI C F, LI J S, FANG Y T, et al. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures[J]. RSC Advances, 2018, 8(8): 4006-4013. [52] SHEN X, DU J, SUN J, et al. Transparent and UV blocking structural colored hydrogel for contact lenses[J]. ACS Applied Materials & Interfaces, 2020, 12(35): 39639-39648. |