[1] LI Z, MA Y N, HU X Y, et al. Enhanced photocatalytic H2 production over dual-cocatalyst-modified g-C3N4 heterojunctions[J]. Chinese Journal of Catalysis, 2019, 40(3): 434-445. [2] ZHU G L, YIN H, YANG C Y, et al. Black titania for superior photocatalytic hydrogen production and photoelectrochemical water splitting[J]. ChemCatChem, 2015, 7(17): 2614-2619. [3] 金瑞瑞,游继光,张 倩,等.Fe掺杂g-C3N4的制备及其可见光催化性能[J].物理化学学报,2014,30(9):1706-1712. JIN R R, YOU J G, ZHANG Q, et al. Preparation of Fe-doped graphitic carbon nitride with enhanced visible-light photocatalytic activity[J]. Acta Physico-Chimica Sinica, 2014, 30(9): 1706-1712(in Chinese). [4] 程宏飞,杜贝贝,孙志明,等.插层法制备g-C3N4/高岭石复合材料及其对罗丹明B的光催化机理研究[J].硅酸盐通报,2017,36(12):4229-4233. CHENG H F, DU B B, SUN Z M, et al. Intercalation preparation of g-C3N4/kaolinite compsite and its photocatalytic mechanism on rhodamine B[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(12): 4229-4233(in Chinese). [5] 杨薛峰,马 涛,申倩倩,等.酸化法制备g-C3N4纳米片及其光催化性能研究[J].人工晶体学报,2018,47(4):703-708+714. YANG X F, MA T, SHEN Q Q, et al. Preparation and photocatalytic activity of g-C3N4 nanosheets by acidification[J]. Journal of Synthetic Crystals, 2018, 47(4): 703-708+714(in Chinese). [6] 张 芬,柴 波,廖 翔,等.RGO/C3N4复合材料的制备及可见光催化性能[J].无机化学学报,2014,30(4):821-827. ZHANG F, CHAI B, LIAO X, et al. Preparation and visible light photocatalytic properties of RGO/C3N4 composites[J]. Chinese Journal of Inorganic Chemistry, 2014, 30(4): 821-827(in Chinese). [7] 王 鹏,魏晓芳,田 林,等.Fe掺杂对改善g-C3N4结构提升光催化活性的影响[J].人工晶体学报,2019,48(2):286-292+297. WANG P, WEI X F, TIAN L, et al. Effect of Fe doping on improving g-C3N4 structure and enhancing photocatalytic activity[J]. Journal of Synthetic Crystals, 2019, 48(2): 286-292+297(in Chinese). [8] GONG Y N, LI D L, LUO C Z, et al. Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors[J]. Green Chemistry, 2017, 19(17): 4132-4140. [9] SEVILLA M, SANCHÍS C, VALDÉS-SOLÍS T, et al. Direct synthesis of graphitic carbon nanostructures from saccharides and their use as electrocatalytic supports[J]. Carbon, 2008, 46(6): 931-939. [10] WANG Q, NIE Y F, CHEN X Y, et al. Controllable synthesis of 2D amorphous carbon and partially graphitic carbon materials: large improvement of electrochemical performance by the redox additive of sulfanilic acid azochromotrop in KOH electrolyte[J]. Electrochimica Acta, 2016, 200: 247-258. [11] LEI H, WANG Y H, HUO J C. Porous graphitic carbon materials prepared from cornstarch with the assistance of microwave irradiation[J]. Microporous and Mesoporous Materials, 2015, 210: 39-45. [12] DEMIR M, KAHVECI Z, AKSOY B, et al. Graphitic biocarbon from metal-catalyzed hydrothermal carbonization of lignin[J]. Industrial & Engineering Chemistry Research, 2015, 54(43): 10731-10739. [13] WANG J C, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710. [14] LIU W J, TIAN K, HE Y R, et al. High-yield harvest of nanofibers/mesoporous carbon composite by pyrolysis of waste biomass and its application for high durability electrochemical energy storage[J]. Environmental Science & Technology, 2014, 48(23): 13951-13959. [15] LOZANO-CASTELLÓ D, CALO J M, CAZORLA-AMORÓS D, et al. Carbon activation with KOH as explored by temperature programmed techniques, and the effects of hydrogen[J]. Carbon, 2007, 45(13): 2529-2536. [16] LI Z Q, LU C J, XIA Z P, et al. X-ray diffraction patterns of graphite and turbostratic carbon[J]. Carbon, 2007, 45(8): 1686-1695. |