人工晶体学报 ›› 2021, Vol. 50 ›› Issue (12): 2362-2378.
顾鹏, 王鹏刚, 官伟明, 郑丽, 谭云强
收稿日期:
2021-08-12
出版日期:
2021-12-15
发布日期:
2022-01-06
作者简介:
顾 鹏(1994—),男,重庆市人,工程师。E-mail:1620472714@qq.com
GU Peng, WANG Penggang, GUAN Weiming, ZHENG Li, TAN Yunqiang
Received:
2021-08-12
Online:
2021-12-15
Published:
2022-01-06
摘要: 单晶光纤因其独特的结构特点以及优良的物理性能而被广泛应用于高功率激光器、辐射探测以及高温环境监测等领域。本文综述了单晶光纤的生长技术,探讨了微下拉法(μ-PD)、激光加热基座法(LHPG)以及导模法(EFG)的生长特点,并重点梳理了单晶光纤生长过程中存在的问题及解决方案。此外详细介绍了包层制备技术发展现状以及局限性。最后,阐述了现阶段单晶光纤的主要分类以及应用场景并对未来发展作出展望。
中图分类号:
顾鹏, 王鹏刚, 官伟明, 郑丽, 谭云强. 单晶光纤生长技术研究进展[J]. 人工晶体学报, 2021, 50(12): 2362-2378.
GU Peng, WANG Penggang, GUAN Weiming, ZHENG Li, TAN Yunqiang. Research Progress on Growth Techniques of Single Crystal Fiber[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2021, 50(12): 2362-2378.
[1] 徐晓东.单晶光纤:高功率激光的优选材料[J].人工晶体学报,2020,49(10):1952. XU X D. Single crystal fiber-preferred material for high power laser [J]. Journal of Synthetic Crystals, 2020, 49(10): 1952(in Chinese). [2] FEIGELSON R S. Growth of shaped crystals[M]//Crystal Growth in Science and Technology. Boston, MA: Springer US, 1989: 275-302. [3] RUDOLPH P, FUKUDA T. Fiber crystal growth from the melt[J]. Crystal Research and Technology, 1999, 34(1): 3-40. [4] LABELLE H E, MLAVSKY A I. Growth of sapphire filaments from the melt[J]. Nature, 1967, 216(5115): 574-575. [5] BURRUS C A, STONE J. Single bcrystal fiber optical devices: a Nd∶YAG fiber laser[J]. Applied Physics Letters, 1975, 26(6): 318-320. [6] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092. [7] SHAW L B, BAYYA S, KIM W, et al. Fabrication of cladded single crystal fibers for all-crystalline fiber lasers[C]//Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF). Zurich. Washington, D.C.: OSA, 2018: SoW2H.3. [8] YOSHIKAWA A, CHANI V. Growth of optical crystals by the micro-pulling-down method[J]. MRS Bulletin, 2009, 34(4): 266-270. [9] JOACHIM R, HERMANN R. Pulling nozzle for oriented pulling of semiconductor crystals from a melt: US3393054A[P]. 1968-7-16. [10] SAMANTA G, YECKEL A, BOURRET-COURCHESNE E D, et al. Parametric sensitivity and temporal dynamics of sapphire crystal growth via the micro-pulling-down method[J]. Journal of Crystal Growth, 2012, 359: 99-106. [11] XU X, LEBBOU K, MORETTI F, et al. Ce-doped LuAG single-crystal fibers grown from the melt for high-energy physics[J]. Acta Materialia, 2014, 67: 232-238. [12] FUKUDA T, CHANI V I. Shaped crystals[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. [13] XU J, SONG Q S, LIU J, et al. The micro-pulling-down growth of Eu3+-doped Y3Al5O12 and Y3ScAl4O12 crystals for red luminescence[J]. Optical Materials, 2020, 109: 110388. [14] PAN Y X, LIN H, LIU J, et al. Spectroscopic properties of Yb3+, Ho3+-doped Y3Al5O12 single crystals grown by the micro-pulling-down method[J]. Infrared Physics & Technology, 2020, 111: 103540. [15] ZENG Z, QIAO L, LIU Y P, et al. Numerical study on the radial dopant distribution in micro-pulling-down crystal growth[J]. Journal of Crystal Growth, 2016, 434: 110-115. [16] WANG Y, LIAN Y S, ZHANG Y P, et al. A series of Er3+-activated SrLaGa3O7 single crystal fibers for mid-infrared laser application[J]. Journal of Rare Earths, 2020, 38(5): 523-530. [17] BOUAITA R, ALOMBERT-GOGET G, GHEZAL E A, et al. Seed orientation and pulling rate effects on bubbles and strain distribution on a sapphire crystal grown by the micro-pulling down method[J]. CrystEngComm, 2019, 21(28): 4200-4211. [18] YOSHIKAWA A, NIKL M, BOULON G, et al. Challenge and study for developing of novel single crystalline optical materials using micro-pulling-down method[J]. Optical Materials, 2007, 30(1): 6-10. [19] SIDLETSKIY O, LEBBOU K, KOFANOV D. Micro-pulling-down growth of long YAG- and LuAG-based garnet fibres: advances and bottlenecks[J]. CrystEngComm, 2021, 23(14): 2633-2643. [20] MURAKAMI R, OIKAWA K, KAMADA K, et al. Investigation of crystal shape controllability in the micro-pulling-down method for low-wettability systems[J]. ACS Omega, 2021, 6(12): 8131-8141. [21] KURLOV V N, EPELBAUM B M. EFG growth of sapphire tubes up to 85 mm in diameter[J]. Journal of Crystal Growth, 1998, 187(1): 107-110. [22] FEJER M M, NIGHTINGALE J L, MAGEL G A, et al. Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers[J]. Review of Scientific Instruments, 1984, 55(11): 1791-1796. [23] 宋晓佳,何 晔,屈菁菁,等.微下拉法晶体生长炉自动控制系统的研究[J].压电与声光,2019,41(2):241-243. SONG X J, HE Y, QU J J, et al. Study on the auto-control system of micro-pulling-down furnace for single crystal growth[J]. Piezoelectrics & Acoustooptics, 2019, 41(2): 241-243(in Chinese). [24] RUDOLPH P, YOSHIKAWA A, FUKUDA T. Studies on meniscus and diameter stability during the growth of fiber crystals by the micro-pulling-down method[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 10): 5966-5969. [25] 王亚琦,张连翰,杭 寅,等.自动控制的微下拉晶体生长装置和自动控制方法: CN105839176A[P].2016-08-10. WANG Y Q, ZHANG L H, HANG Y, et al. Automatic controlled micro pull-down crystal growth device and automatic control method: CN105839176A[P].2016-08-10(in Chinese). [26] KAMADA K, YANAGIDA T, PEJCHAL J, et al. Scintillation properties of Ce doped Gd2Lu1(Ga, Al)5O12 single crystal grown by the micro-pulling-down method[J]. Journal of Crystal Growth, 2012, 352(1): 35. [27] KAN S, SAKAMOTO M, OKANO Y, et al. Photorefraction dependent on composition in LiNbO3 crystals with and without MgO doping[J]. Crystal Research and Technology, 1996, 31(3): 353-357. [28] KAMADA K, PEJCHAL J, NIKL M, et al. Growth of Sc doped RE3Al5O12 (RE = Y, Lu) single crystals by micro-pulling-down method and their scintillation properties[J]. Optical Materials, 2014, 36(12): 1934-1937. [29] SUGIYAMA M, YOKOTA Y, FUJIMOTO Y, et al. Dopant segregation in rare earth doped lutetium aluminum garnet single crystals grown by the micro-pulling down method[J]. Journal of Crystal Growth, 2012, 352(1): 110-114. [30] NOVOSELOV A, MUN J H, YOSHIKAWA A, et al. Growth of Yb∶Y2O3 single crystals by the micro-pulling-down method[J]. MRS Online Proceedings Library, 2004, 848(1): 288-293. [31] MAIER D, RHEDE D, BERTRAM R, et al. Dopant segregations in oxide single-crystal fibers grown by the micro-pulling-down method[J]. Optical Materials, 2007, 30(1): 11-14. [32] SIMURA R, YOSHIKAWA A, UDA S. The radial distribution of dopant (Cr, Nd, Yb, or Ce) in yttrium aluminum garnet (Y3Al5O12) single crystals grown by the micro-pulling-down method[J]. Journal of Crystal Growth, 2009, 311(23/24): 4763-4769. [33] 刘亚平.微下拉法晶体生长数值模拟[D].重庆:重庆大学,2014. LIU Y P. Numerical simulation of micro-pulling-down crystal growth[D]. Chongqing: Chongqing University, 2014(in Chinese). [34] SU W J, DUFFAR T, NEHARI A, et al. Modeling of dopant segregation in sapphire single crystal fibre growth by Micro-Pulling-Down method[J]. Journal of Crystal Growth, 2017, 474: 43-49. [35] NICOARA I, BUNOIU O M, VIZMAN D. Voids engulfment in shaped sapphire crystals[J]. Journal of Crystal Growth, 2006, 287(2): 291-295. [36] GHEZAL E A, LI H, NEHARI A, et al. Effect of pulling rate on bubbles distribution in sapphire crystals grown by the micropulling down (μ-PD) technique[J]. Crystal Growth & Design, 2012, 12(8): 4098-4103. [37] GUZIK M, PEJCHAL J, YOSHIKAWA A, et al. Structural investigations of Lu2O3 as single crystal and polycrystalline transparent ceramic[J]. Crystal Growth & Design, 2014, 14(7): 3327-3334. [38] FEIGELSON R S. The laser-heated pedestal growth method: a powerful tool in the search for new high performance laser crystals[C]//Tunable Solid State Lasers, 1985. DOI:10.1007/978-3-540-39236-1_19. [39] WANG T, ZHANG J, ZHANG N, et al. Single crystal fibers: diversified functional crystal material[J]. Advanced Fiber Materials, 2019, 1(3/4): 163-187. [40] ANDREETA M R B, HERNANDES A C. Laser-heated pedestal growth of oxide fibers[M]//Springer Handbook of Crystal Growth. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010: 393-432. [41] 危子彪,霍玉晶,何淑芳.微机控制的晶体光纤生长设备[J].人工晶体学报,1996,25(3): 268-271. WEI Z B, HUO Y J, HE S F. Microcomputer controlled single crystal fiber growth apparatus[J]. Journal of Synthetic Crystals, 1996, 25(3): 268-271 (in Chinese). [42] 沈永行,王彦起,叶林华,等.用LHPG法生长晶体光纤的环形聚焦激光加热系统研究[J].高技术通讯,1994,4(7): 16-18. SHEN Y H, WANG Y Q, YE L H, et al. Study on the laser-heated miniature pedestal growth system with circular laser focusing[J]. High Technology Letters, 1994, 4(7): 16-18 (in Chinese). [43] 沈剑威,王 迅,沈永行.LHPG法生长单晶光纤中熔区生长界面对消除气泡的影响[J].人工晶体学报,2008,37(1):60-64. SHEN J W, WANG X, SHEN Y H. Effects of growing interface on elimination of bubbles in single-crystal fibers by using the LHPG method[J]. Journal of Synthetic Crystals, 2008, 37(1): 60-64(in Chinese). [44] ANDREETA M R B, ANDREETA E R M, HERNANDES A C. Laser-heated pedestal growth of colorless LaAlO3 single crystal fiber[J]. Journal of Crystal Growth, 2005, 275(1/2): e757-e761. [45] 卢子宏,陈继勤,陈溪芳,等.单晶光纤生长中的直径波动[J].硅酸盐学报,1990,18(3):262-267. LU Z H, CHEN J Q, CHEN X F, et al. The diameter fluctuation in the growth of single crystal fibers[J]. Journal of the Chinese Ceramic Society, 1990, 18(3): 262-267(in Chinese). [46] FEJER M M, MAGEL G A, BYER R L. High-speed high-resolution fiber diameter variation measurement system[J]. Applied Optics, 1985, 24(15): 2362. [47] ANDREETA M R B, CARASCHI L C, HERNANDES A C. Automatic diameter control system applied to the laser heated pedestal growth technique[J]. Materials Research, 2003, 6(1): 107-110. [48] KATYBA G M, ZAYTSEV K I, DOLGANOVA I N, et al. Sapphire waveguides and fibers for terahertz applications[J]. Progress in Crystal Growth and Characterization of Materials, 2021, 67(3): 100523. [49] PRYSHLAK A P, DUGAN J R, FITZGIBBON J J. Advancements in sapphire optical fibers for the delivery of erbium laser energy and IR sensor applications[C]//Photonics West '96. Proc SPIE 2677, Biomedical Fiber Optics, San Jose, CA, USA. 1996, 2677: 35-42. [50] KATYBA G M, ZAYTSEV K I, DOLGANOVA I N, et al. Sapphire shaped crystals for waveguiding, sensing and exposure applications[J]. Progress in Crystal Growth and Characterization of Materials, 2018, 64(4): 133-151. [51] ABROSIMOVI N V, KURLOV V N, ROSSOLENKO S N. Automated control of Czochralski and shaped crystal growth processes using weighing techniques[J]. Progress in Crystal Growth and Characterization of Materials, 2003, 46(1/2): 1-57. [52] LIU B, OHODNICKI P R. Fabrication and application of single crystal fiber: review and prospective[J]. Advanced Materials Technologies, 2021, 6(9): 2100125. [53] WANG D H, HOU W T, LI N, et al. Defects and optical property of single-crystal sapphire fibers grown by edge-defined film-fed growth method[J]. Journal of Inorganic Materials, 2020, 35(9): 1053. [54] KURLOV V N, STRYUKOV D O, SHIKUNOVA I A. Growth of sapphire and oxide eutectic fibers by the EFG technique[J]. Journal of Physics: Conference Series, 2016, 673: 012017. [55] 李东振,徐 军,王东海,等.一种直径均匀单晶光纤加工方法: CN110257919A[P].2019-09-20. LI D Z, XU J, WANG D H, et al. A processing method of single crystal optical fiber with uniform diameter: CN110257919A[P].2019-09-20(in Chinese). [56] YIN S Z, LUO F. Method and apparatus for producing crystalline cladding and crystalline core optical fibers: US10274673[P]. 2019-04-30. [57] KIM W, BAYYA S, SHAW B, et al. Hydrothermally cladded crystalline fibers for laser applications[J]. Optical Materials Express, 2019, 9(6): 2716. [58] HUANG K Y, HSU K Y, JHENG D Y, et al. Low-loss propagation in Cr4+∶YAG double-clad crystal fiber fabricated by sapphire tube assisted CDLHPG technique[J]. Optics Express, 2008, 16(16): 12264-12271. [59] LEE H, SIRN B, PARK I S. Recent progress in ceramic YAG cladding technology for fiber laser applications[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8733, Laser Technology for Defense and Security Ⅸ, Baltimore, Maryland, USA. 2013, 8733: 148-159. [60] LAI C C, GAO W T, NGUYEN D H, et al. Toward single-mode active crystal fibers for next-generation high-power fiber devices[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 13928-13936. [61] 王 涛,张 健,张 娜,等.单晶光纤制备及单晶光纤激光器研究进展[J].激光与光电子学进展,2019,56(17):170611. WANG T, ZHANG J, ZHANG N, et al. Research progress in preparation of single crystal fiber and fiber lasers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170611(in Chinese). [62] BERA S, NIE C D, HARRINGTON J A, et al. Cladding single crystal YAG fibers grown by laser heated pedestal growth[C]//SPIE LASE. Proc SPIE 9726, Solid State Lasers XXV: Technology and Devices, San Francisco, California, USA. 2016, 9726: 43-51. [63] LAI C C, LIN Y S, HUANG K Y, et al. Study on the core/cladding interface in Cr∶YAG double-clad crystal fibers grown by the codrawing laser-heated pedestal growth method[J]. Journal of Applied Physics, 2010, 108(5): 054308. [64] 徐 军, 赵广军, 刘军芳,等. 掺钕钇铝石榴石和钇铝石榴石复合激光晶体的制备方法: CN1424437[P]. 2002-12-20. XU J, ZHAO G J, LIU J F, et al. Preparation of Nd∶YAG and Er∶YAG composite laser crystals: CN1424437[P]. 2002-12-20(in Chinese). [65] 孟 宗,陈子君,李玉和,等.石英包层LYSO∶Ce闪烁光纤的电子辐射传感特性[J].中国激光,2020,47(8):168-174. MENG Z, CHEN Z J, LI Y H, et al. Electron radiation sensing characteristics of silica cladding LYSO∶Ce scintillating fiber[J]. Chinese Journal of Lasers, 2020, 47(8): 168-174(in Chinese). [66] DIEHL S, NOVOTNY R W, AUBRY N, et al. Development and characterization of inorganic scintillating fibers made of LuAG∶Ce and LYSO∶Ce[J]. IEEE Transactions on Nuclear Science, 2014, 61(1): 353-361. [67] DIEHL S, NOVOTNY R W, AUBRY N, et al. Characterization and applications of new high quality LuAG∶Ce and LYSO∶Ce fibers[J]. Journal of Physics: Conference Series, 2015, 587: 012067. [68] DIEHL S, NOVOTNY R W, AUBRY N, et al. Characterization and optimization of new high-quality inorganic fibers made of LuAG∶Ce and LYSO: ce[C]//2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC). November 8-15, 2014, Seattle, WA, USA. IEEE, 2014: 1-6. [69] DIDIERJEAN J, AUBRY N, PERRODIN D, et al. Oxide crystal-fibers grown by micro-pulling-down technique and applications for lasers and scintillators[C]//SPIE OPTO. Proc SPIE 8263, Oxide-Based Materials and Devices Ⅲ, San Francisco, California, USA. 2012, 8263: 132-144. [70] DÉLEN X, MARTIAL I, DIDIERJEAN J, et al. 34 W continuous wave Nd∶YAG single crystal fiber laser emitting at 946 nm[J]. Applied Physics B, 2011, 104(1): 1-4. [71] SANGLA D, AUBRY N, DIDIERJEAN J, et al. First demonstration of laser emission from an Yb∶YAG single crystal fiber grown by the micro-pulling down technique[C]//2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science. May 4-9, 2008, San Jose, CA, USA. IEEE, 2008: 1-2. [72] DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900. [73] ZAOUTER Y, MARTIAL I, DÉLEN X, et al. 12 W, 350 fs ultrashort pulses from a micro-pulling down Yb∶YAG single crystal fiber amplifier[C]//2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC). May 22-26, 2011, Munich, Germany. IEEE, 2011: 1. [74] MARKOVIC V, ROHRBACHER A, HOFMANN P, et al. 160 W800 fs Yb∶YAG single crystal fiber amplifier without CPA[J]. Optics Express, 2015, 23(20): 25883-25888. [75] MARTIAL I, DIDIERJEAN J, BALEMBOIS F, et al. Er∶YAG single-crystal fiber laser in Q-switched operation[C]//Advances in Optical Materials. Istanbul. Washington, D.C.: OSA, 2011. [76] ZANDI B, GRUBER J B, SARDAR D K, et al. Modeling of Er in ceramic YAG and comparison with single-crystal YAG[C]//Defense and Security. Proc SPIE 5792, Laser Source and System Technology for Defense and Security, Orlando, Florida, USA. 2005, 5792: 26-33. [77] MARTIAL I, BIGOTTA S, EICHHORN M, et al. Er∶YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: characterization and laser operation[J]. Optical Materials, 2010, 32(9): 1251-1255. [78] LI Y, JOHNSON E G, NIE C D, et al. Ho∶YAG single crystal fiber: fabrication and optical characterization[J]. Optics Express, 2014, 22(12): 14896. [79] WANG J, SONG Q, SUN Y, et al. High-performance Ho∶YAG single-crystal fiber laser in-band pumped by a Tm-doped all-fiber laser[J]. Optics Letters, 2019, 44(2): 455-458. [80] ZHAO Y G, WANG L, CHEN W D, et al. 35 W continuous-wave Ho∶YAG single-crystal fiber laser[J]. High Power Laser Science and Engineering, 2020, 8: e25. DOI:10.1017/hpl.2020.25. [81] NIHEI T, YOKOTA Y, ARAKAWA M, et al. Growth of platinum fibers using the micro-pulling-down method[J]. Journal of Crystal Growth, 2017, 468: 403-406. [82] MURAKAMI R, KAMADA K, SHOJI Y, et al. Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple[J]. Journal of Crystal Growth, 2018, 487: 72-77. [83] 钟鹤裕,侯印春,权宁三,等.铌酸锂单晶光纤的生长[J].硅酸盐学报,1991,19(6):527-531. ZHONG H Y, HOU Y C, QUAN N S, et al. Growth of lithium niobate single crystal fiber[J]. Journal of the Chinese Ceramic Society, 1991, 19(6): 527-531(in Chinese). [84] 霍玉晶,张红武,赵书清,等.LiB3O5单晶光纤生长[J].人工晶体学报,1989,18(4):259-261. HUO Y J, ZHANG H W, ZHAO S Q, et al. Growth of LBO single crystal fibers[J]. Journal of Synthetic Crystals, 1989, 18(4): 259-261(in Chinese). |
[1] | 王涛, 贾志泰, 李阳, 张健, 陶绪堂. 单晶光纤制备及高温传感器研究进展[J]. 人工晶体学报, 2021, 50(9): 1603-1624. |
[2] | 徐杰, 宋青松, 刘坚, 丁雨憧, 李东振, 徐晓东, 徐军. Sm∶YAG/Sm∶Y3ScAl4O12单晶光纤的生长及光谱性能[J]. 人工晶体学报, 2021, 50(7): 1391-1396. |
[3] | 陈伟超, 罗平, 王庆国, 唐慧丽, 薛艳艳, 段金柱, 王勤峰, 雷震霖, 徐军. 多片导模法蓝宝石晶体的缺陷研究[J]. 人工晶体学报, 2021, 50(4): 741-746. |
[4] | 王贵吉, 尹延如, 贾志泰, 陶绪堂. Er:Lu2O3单晶的导模法生长及性能表征[J]. 人工晶体学报, 2021, 50(4): 747-751. |
[5] | 王新月, 张胜男, 霍晓青, 周金杰, 王健, 程红娟. 超宽禁带半导体β-Ga2O3相关研究进展[J]. 人工晶体学报, 2021, 50(11): 1995-2012. |
[6] | 马云峰, 徐家跃, 蒋毅坚, BOURRET-COURCHESNE Edith. 面向集装箱安检应用的Mg4Ta2O9闪烁晶体及其掺杂改性[J]. 人工晶体学报, 2021, 50(10): 1870-1878. |
[7] | 王东海;徐军;李东振;王庆国;罗平;董建树;潘燕萍. 导模法生长超大尺寸蓝宝石板材的研究[J]. 人工晶体学报, 2020, 49(3): 398-401. |
[8] | 张晋, 胡壮壮, 穆文祥, 田旭升, 冯倩, 贾志泰, 张进成, 陶绪堂, 郝跃. 高质量氧化镓单晶及肖特基二极管的制备[J]. 人工晶体学报, 2020, 49(11): 2194-2199. |
[9] | 罗平;王庆国;董建树;王东海;吴锋;唐慧丽;徐军. 导模法(EFG)生长大尺寸厚壁管状蓝宝石单晶[J]. 人工晶体学报, 2019, 48(7): 1214-1215. |
[10] | 陶绪堂;王善朋;王蕾;尹延如;刘阳;张国栋;张健;胡强强;贾志泰;高泽亮;穆文祥. 晶体材料研究——从体块晶体到微纳米晶体[J]. 人工晶体学报, 2019, 48(5): 763-786. |
[11] | 程红娟;张胜男;练小正;金雷;徐永宽. β-Ga2O3体单晶X射线光电子能谱分析[J]. 人工晶体学报, 2019, 48(1): 8-12. |
[12] | 余露;叶林华;包仁杰;张献伟;王立刚. MgAl2O4:Cr3+单晶光纤生长与荧光温度特性研究[J]. 人工晶体学报, 2017, 46(9): 1672-1677. |
[13] | 朱雁风;王萍;武安华. 导模法生长六片片状蓝宝石晶体的研究[J]. 人工晶体学报, 2017, 46(8): 1425-1429. |
[14] | 贾志泰;穆文祥;尹延如;张健;陶绪堂. 导模法生长高质量氧化镓单晶的研究[J]. 人工晶体学报, 2017, 46(2): 193-196. |
[15] | 陈赛;徐家跃;陆宝亮. 微下拉法生长炉研制及其在BGSO混晶生长上的应用[J]. 人工晶体学报, 2015, 44(12): 3755-3758. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||