[1] BAI S, DA P M, LI C, et al. Planar perovskite solar cells with long-term stability using ionic liquid additives[J]. Nature, 2019, 571(7764): 245-250. [2] LI N X, TAO S X, CHEN Y H, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells[J]. Nature Energy, 2019, 4(5): 408-415. [3] YANG X Y, FU Y Q, SU R, et al. Superior carrier lifetimes exceeding 6 μs in polycrystalline halide perovskites[J]. Advanced Materials, 2020, 32(39): 2002585. [4] EPERON G E, STONE K H, MUNDT L E, et al. The role of dimethylammonium in bandgap modulation for stable halide perovskites[J]. ACS Energy Letters, 2020, 5(6): 1856-1864. [5] ZHANG J T, ZHAI G M, GAO W H, et al. Accelerated formation and improved performance of CH3NH3PbI-3 based perovskite solar cells via solvent coordination and anti-solvent extraction[J]. Journal of Materials Chemistry A, 2017, 5(8): 4190-4198. [6] XIE Y M, XUE Q F, YIP H L. Metal-halide perovskite crystallization kinetics: a review of experimental and theoretical studies[J]. Advanced Energy Materials, 2021, 11(24): 2100784. [7] CHENG Y H, DING L M. Pushing commercialization of perovskite solar cells by improving their intrinsic stability[J]. Energy & Environmental Science, 2021, 14(6): 3233-3255. [8] KIM M, JEONG J, LU H Z, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306. [9] TAN S, YAVUZ I, WEBER M H, et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite[J]. Joule, 2020, 4(11): 2426-2442. [10] GAO F, ZHAO Y, ZHANG X W, et al. Recent progresses on defect passivation toward efficient perovskite solar cells[J]. Advanced Energy Materials, 2020, 10(13): 1902650. [11] QI W J, ZHOU X, LI J L, et al. Inorganic material passivation of defects toward efficient perovskite solar cells[J]. Science Bulletin, 2020, 65(23): 2022-2032. [12] LIN Y H, SAKAI N, DA P M, et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells[J]. Science, 2020, 369(6499): 96-102. [13] ZHU H W, LIU Y H, EICKEMEYER F T, et al. Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency[J]. Advanced Materials, 2020, 32(12): 1907757. [14] XIE J, ZHOU Z R, QIAO H W, et al. Modulating MAPbI3 perovskite solar cells by amide molecules: crystallographic regulation and surface passivation[J]. Journal of Energy Chemistry, 2021, 56: 179-185. [15] MA C Q, PARK N G. Paradoxical approach with a hydrophilic passivation layer for moisture-stable, 23% efficient perovskite solar cells[J]. ACS Energy Letters, 2020, 5(10): 3268-3275. [16] LI Y, SHI J W, ZHENG J H, et al. Acetic acid assisted crystallization strategy for high efficiency and long-term stable perovskite solar cell[J]. Advanced Science, 2020, 7(5): 1903368. [17] JIANG Q, ZHAO Y, ZHANG X W, et al. Surface passivation of perovskite film for efficient solar cells[J]. Nature Photonics, 2019, 13(7): 460-466. [18] WANG R, XUE J J, MENG L, et al. Caffeine improves the performance and thermal stability of perovskite solar cells[J]. Joule, 2019, 3(6): 1464-1477. [19] CHEN K, WU J, WANG Y, et al. Defect passivation by alcohol-soluble small molecules for efficient p-i-n planar perovskite solar cells with high open-circuit voltage[J]. Journal of Materials Chemistry A, 2019, 7(37): 21140-21148. [20] YI J, ZHUANG J, LIU X C, et al. Triphenylamine hydrophobic surface prepared by low-temperature solution deposition for stable and high-efficiency SnO2 planar perovskite solar cells[J]. Journal of Alloys and Compounds, 2020, 830: 154710. [21] WANG S D, ZHANG S Z, LIU H, et al. Controlled release of antibiotics encapsulated in the electrospinning polylactide nanofibrous scaffold and their antibacterial and biocompatible properties[J]. Materials Research Express, 2014, 1(2): 025406. [22] LIU G Z, ZHENG H Y, ZHANG L Y, et al. Tailoring multifunctional passivation molecules with halogen functional groups for efficient and stable perovskite photovoltaics[J]. Chemical Engineering Journal, 2021, 407: 127204. [23] CHO S P, LEE H J, SEO Y H, et al. Multifunctional passivation agents for improving efficiency and stability of perovskite solar cells: synergy of methyl and carbonyl groups[J]. Applied Surface Science, 2022, 575: 151740. [24] 高领伟,翟光美,任锦涛,等.碘化钾对两步法制备钙钛矿薄膜及其电池性能的影响[J].发光学报,2021,42(6):838-848. GAO L W, ZHAI G M, REN J T, et al. Effect of potassium iodide on film quality and photovoltaic performance of perovskite solar cells fabricated via two-step method[J]. Chinese Journal of Luminescence, 2021, 42(6): 838-848(in Chinese). [25] XIE L, CHEN J Z, VASHISHTHA P, et al. Importance of functional groups in cross-linking methoxysilane additives for high-efficiency and stable perovskite solar cells[J]. ACS Energy Letters, 2019, 4(9): 2192-2200. [26] LIU G Z, ZHENG H Y, XU H F, et al. Interface passivation treatment by halogenated low-dimensional perovskites for high-performance and stable perovskite photovoltaics[J]. Nano Energy, 2020, 73: 104753. [27] ZHANG C F, ZHAI G M, ZHANG Y, et al. Enhanced device performance and stability of perovskite solar cells with low-temperature ZnO/TiO2 bilayered electron transport layers[J]. RSC Advances, 2018, 8(41): 23019-23026. [28] ZHANG Y, ZHAI G M, GAO L W, et al. Improving performance of perovskite solar cells based on ZnO nanorods via rod-length control and sulfidation treatment[J]. Materials Science in Semiconductor Processing, 2020, 117: 105205. [29] LI Y Z, ZHANG Z B, ZHOU Y, et al. Enhanced performance and stability of ambient-processed CH3NH3PbI3-x(SCN)x planar perovskite solar cells by introducing ammonium salts[J]. Applied Surface Science, 2020, 513: 145790. [30] SHAO Z M, ZHAI G M, ZHENG L L, et al. Tailoring perovskite conversion and grain growth by in situ solvent assisted crystallization and compositional variation for highly efficient perovskite solar cells[J]. Organic Electronics, 2019, 69: 208-215. [31] MIAO Y W, ZHENG M M, WANG H X, et al. In-situ secondary annealing treatment assisted effective surface passivation of shallow defects for efficient perovskite solar cells[J]. Journal of Power Sources, 2021, 492: 229621. [32] CAI Y, CUI J, CHEN M, et al. Multifunctional enhancement for highly stable and efficient perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(7): 2005776. |