[1] 刘俊逸,张 宇,张 蕾,等.含酚工业废水处理技术的研究进展[J].工业水处理,2018,38(10):12-16. LIU J Y, ZHANG Y, ZHANG L, et al. Research progress in the treatment technologies of industrial wastewater containing phenol[J]. Industrial Water Treatment, 2018, 38(10): 12-16(in Chinese). [2] LIU G H, YE Z F, LI H Y, et al. Biological treatment of hexanitrostilbene (HNS) produced wastewater using an anaerobic-aerobic immobilized microbial system[J]. Chemical Engineering Journal, 2012, 213: 118-124. [3] DUTTA K, MUKHOPADHYAY S, BHATTACHARJEE S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction[J]. Journal of Hazardous Materials, 2001, 84(1): 57-71. [4] YANG Z Y, ZHANG Y G, ZHU W J, et al. Effective oxidative degradation of coal gasification wastewater by ozonation: a process study[J]. Chemosphere, 2020, 255: 126963. [5] LAZO-CANNATA J C, NIETO-MÁRQUEZ A, JACOBY A, et al. Adsorption of phenol and nitrophenols by carbon nanospheres: effect of pH and ionic strength[J]. Separation and Purification Technology, 2011, 80(2): 217-224. [6] SUN X F, WANG C W, LI Y B, et al. Treatment of phenolic wastewater by combined UF and NF/RO processes[J]. Desalination, 2015, 355: 68-74. [7] PALMA-GOYES R E, VAZQUEZ-ARENAS J, TORRES-PALMA R A, et al. The abatement of indigo carmine using active chlorine electrogenerated on ternary Sb2O5-doped Ti/RuO2-ZrO2 anodes in a filter-press FM01-LC reactor[J]. Electrochimica Acta, 2015, 174: 735-744. [8] LEI J W, DUAN P Z, LIU W J, et al. Degradation of aqueous cefotaxime in electro-oxidation—electro-Fenton—persulfate system with Ti/CNT/SnO2-Sb-Er anode and Ni@NCNT cathode[J]. Chemosphere, 2020, 250: 126163. [9] BI Q, GUAN W Z, GAO Y, et al. Study of the mechanisms underlying the effects of composite intermediate layers on the performance of Ti/SnO2-Sb-La electrodes[J]. Electrochimica Acta, 2019, 306: 667-679. [10] LIU B, WANG C Y, CHEN Y Q, et al. Electrochemical behavior and corrosion mechanism of Ti/IrO2-RuO2 anodes in sulphuric acid solution[J]. Journal of Electroanalytical Chemistry, 2019, 837: 175-183. [11] XU L, LI M, XU W. Preparation and characterization of Ti/SnO2-Sb electrode with copper nanorods for AR73 removal[J]. Electrochimica Acta, 2015, 166: 64-72. [12] SHAO D, LI X L, XU H, et al. An improved stable Ti/Sb-SnO2 electrode with high performance in electrochemical oxidation processes[J]. RSC Advances, 2014, 4(41): 21230. [13] CHEN X M, CHEN G H, YUE P L. Stable Ti/IrOx-Sb2O5-SnO2 anode for O2 evolution with low Ir content[J]. The Journal of Physical Chemistry B, 2001, 105(20): 4623-4628. [14] SUN Y, CHENG S A, LI L X, et al. Facile sealing treatment with stannous citrate complex to enhance performance of electrodeposited Ti/SnO2-Sb electrode[J]. Chemosphere, 2020, 255: 126973. [15] ZHAO S Y, LI C X, LIU J, et al. Carbon quantum dots/SnO2-Co3O4 composite for highly efficient electrochemical water oxidation[J]. Carbon, 2015, 92: 64-73. [16] LIU B, WANG S, WANG C Y, et al. Surface morphology and electrochemical properties of RuO2-doped Ti/IrO2-ZrO2 anodes for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2019, 778: 593-602. [17] TONG J L, LIU Y, PENG Q, et al. An efficient Sb-SnO2-supported IrO2 electrocatalyst for the oxygen evolution reaction in acidic medium[J]. Journal of Materials Science, 2017, 52(23): 13427-13443. [18] 张招贤,赵国鹏,罗小军.钛电极学导论[M].北京:冶金工业出版社,2008. ZHANG Z X, ZHAO G P, LUO X J. Introduction to titanium electrode[M]. Beijing: Metallurgical Industry Press, 2008(in Chinese). [19] CHAIYONT R, BADOE C, PONCE DE LEÓN C, et al. Decolorization of methyl orange dye at IrO2-SnO2-Sb2O5 coated titanium anodes[J]. Chemical Engineering & Technology, 2013, 36(1): 123-129. [20] DING H Y, FENG Y J, LU J W. Study on the service life and deactivation mechanism of Ti/SnO2-Sb electrode by physical and electrochemical methods[J]. Russian Journal of Electrochemistry, 2010, 46(1): 72-76. [21] YU N C, LU X Y, SONG F, et al. Electrocatalytic degradation of sulfamethazine on IrO2-RuO2 composite electrodes: influencing factors, kinetics and modeling[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105301. [22] ZHANG B B, CHEN S, BAO L, et al. Preparation of Sn-Ir binary oxide electrode and its application in degradation of simulated wastewater of p-chlorophenol[J]. Advanced Materials Research, 2011, 347/348/349/350/351/352/353: 2313-2317. [23] BARIŞÇI S, TURKAY O, ÖZTÜRK H, et al. Anodic oxidation of phenol by mixed-metal oxide electrodes: identification of transformation by-products and toxicity assessment[J]. Journal of the Electrochemical Society, 2017, 164(7): E129-E137. [24] DUAN T G, WEN Q, CHEN Y, et al. Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets[J]. Journal of Hazardous Materials, 2014, 280: 304-314. [25] GAN L, WU Y F, SONG H O, et al. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols[J]. Chemosphere, 2019, 226: 329-339. [26] WANG C, YU Y X, YIN L F, et al. Insights of ibuprofen electro-oxidation on metal-oxide-coated Ti anodes: kinetics, energy consumption and reaction mechanisms[J]. Chemosphere, 2016, 163: 584-591. [27] NIU J F, LI Y, SHANG E X, et al. Electrochemical oxidation of perfluorinated compounds in water[J]. Chemosphere, 2016, 146: 526-538. [28] ZHAO W, XING J T, CHEN D H, et al. Electrochemical degradation of Musk ketone in aqueous solutions using a novel porous Ti/SnO2-Sb2O3/PbO2 electrodes[J]. Journal of Electroanalytical Chemistry, 2016, 775: 179-188. [29] GHANBARI F, MORADI M, GOHARI F. Degradation of 2, 4, 6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals[J]. Journal of Water Process Engineering, 2016, 9: 22-28. [30] LIN H, NIU J F, XU J L, et al. Electrochemical mineralization of sulfamethoxazole by Ti/SnO2-Sb/Ce-PbO2 anode: kinetics, reaction pathways, and energy cost evolution[J]. Electrochimica Acta, 2013, 97: 167-174. [31] DAI Q Z, ZHOU J Z, MENG X Y, et al. Electrochemical oxidation of cinnamic acid with Mo modified PbO2 electrode: electrode characterization, kinetics and degradation pathway[J]. Chemical Engineering Journal, 2016, 289: 239-246. [32] COTEIRO R D, ANDRADE A R. Electrochemical oxidation of 4-chlorophenol and its by-products using Ti/Ru0.3M0.7O2 (M=Ti or Sn) anodes: preparation route versus degradation efficiency[J]. Journal of Applied Electrochemistry, 2007, 37(6): 691-698. [33] PALMA-GOYES R E, VAZQUEZ-ARENAS J, OSTOS C, et al. Microstructural and electrochemical analysis of Sb2O5 doped-Ti/RuO2-ZrO2 to yield active chlorine species for ciprofloxacin degradation[J]. Electrochimica Acta, 2016, 213: 740-751. [34] ZHANG Z, SUN Q Q, SI Y P. Degradation properties of Ti/Sb-SnO2 electrodes containing different intermediate layers for phenol[J]. Materials Science Forum, 2013, 743/744: 420-426. [35] WANG H, WANG J L. The cooperative electrochemical oxidation of chlorophenols in anode-cathode compartments[J]. Journal of Hazardous Materials, 2008, 154(1/2/3): 44-50. [36] RAJKUMAR D, GUK KIM J, PALANIVELU K. Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment[J]. Chemical Engineering & Technology, 2005, 28(1): 98-105. |