[1] DUBAL D P, AYYAD O, RUIZ V, et al. Hybrid energy storage: the merging of battery and supercapacitor chemistries[J]. Chemical Society Reviews, 2015, 44(7): 1777-1790. [2] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. [3] CHAUDHARI N K, JIN H, KIM B, et al. MXene: an emerging two-dimensional material for future energy conversion and storage applications[J]. Journal of Materials Chemistry A, 2017, 5(47): 24564-24579. [4] XIONG D B, LI X F, BAI Z M, et al. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage[J]. Small, 2018, 14(17): 1703419. [5] NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23(37): 4248-4253. [6] ZHANG J Z, KONG N, UZUN S, et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity[J]. Advanced Materials, 2020, 32(23): 2001093. [7] LUKATSKAYA M R, KOTA S, LIN Z F, et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides[J]. Nature Energy, 2017, 2: 17105. [8] ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Materials, 2015, 27(2): 339-345. [9] DENG Y Q, SHANG T X, WU Z T, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions[J]. Advanced Materials, 2019, 31(43): 1902432. [10] YANG X, YAO Y W, WANG Q, et al. 3D macroporous oxidation-resistant Ti3C2Tx MXene hybrid hydrogels for enhanced supercapacitive performances with ultralong cycle life[J]. Advanced Functional Materials, 2021, 32(10): 2109479. [11] WU X Y, HAN B Y, ZHANG H B, et al. Compressible, durable and conductive polydimethylsiloxane-coated MXene foams for high-performance electromagnetic interference shielding[J]. Chemical Engineering Journal, 2020, 381: 122622. [12] YANG M L, YUAN Y, LI Y, et al. Anisotropic electromagnetic absorption of aligned Ti3C2Tx MXene/gelatin nanocomposite aerogels[J]. ACS Applied Materials Interfaces, 2020, 12(29): 33128-33138. [13] CAI C Y, WEI Z C, DENG L X, et al. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors[J]. ACS Applied Materials Interfaces, 2021, 13(45): 54170-54184. [14] HUANG X W, HUANG J H, YANG D, et al. A multi-scale structural engineering strategy for high-performance MXene hydrogel supercapacitor electrode[J]. Advanced Science, 2021, 8(18): 2101664. [15] MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. ACS Nano, 2010, 4(8): 4806-4814. [16] YAN J, REN C E, MALESKI K, et al. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance[J]. Advanced Functional Materials, 2017, 27(30): 1701264. [17] SHAHZAD F, ALHABEB M, HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. [18] LI W, LI X F, CHANG W, et al. Vertically aligned reduced graphene oxide/Ti3C2Tx MXene hybrid hydrogel for highly efficient solar steam generation[J]. Nano Research, 2020, 13(11): 3048-3056. [19] LIANG L Y, LI Q M, YAN X, et al. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance[J]. ACS Nano, 2021, 15(4): 6622-6632. |