[1] 张文海,吉庆华,兰华春,等.BiOCl-(NH4)3PW12O40复合光催化剂制备及其光催化降解污染物机制[J].环境科学,2019,40(3):1295-1301. ZHANG W H, JI Q H, LAN H C, et al. Preparation of BiOCl-(NH4)3PW12O40 photocatalyst and a mechanism for photocatalytic degradation of organic pollutants[J]. Environmental Science, 2019, 40(3): 1295-1301(in Chinese). [2] LI R, LIU J X, ZHANG X F, et al. Iodide-modified Bi4O5Br2 photocatalyst with tunable conduction band position for efficient visible-light decontamination of pollutants[J]. Chemical Engineering Journal, 2018, 339: 42-50. [3] DI J, XIA J X, JI M X, et al. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight[J]. Journal of Materials Chemistry A, 2015, 3(29): 15108-15118. [4] CHEN Y Y, LI R P, GU Y, et al. Green and efficient degradation of cefoperazone sodium by Bi4O5Br2 leading to the production of non-toxic products: performance and degradation pathway[J]. Journal of Environmental Sciences, 2021, 100: 203-215. [5] YI F T, MA J Q, LIN C W, et al. Insights into the enhanced adsorption/photocatalysis mechanism of a Bi4O5Br2/g-C3N4 nanosheet[J]. Journal of Alloys and Compounds, 2020, 821: 153557. [6] LIAN W W, WANG L B, WANG X L, et al. Facile preparation of BiOCl/Ti3C2 hybrid photocatalyst with enhanced visible-light photocatalytic activity[J]. Functional Materials Letters, 2019, 12(1): 1850100. [7] JIANG N, DU Y, JI P H, et al. Enhanced photocatalytic activity of novel TiO2/Ag/MoS2/Ag nanocomposites for water-treatment[J]. Ceramics International, 2020, 46(4): 4889-4896. [8] AN X Q, WANG W, WANG J P, et al. The synergetic effects of Ti3C2 MXene and Pt as co-catalysts for highly efficient photocatalytic hydrogen evolution over g-C3N4[J]. Physical Chemistry Chemical Physics: PCCP, 2018, 20(16): 11405-11411. [9] XUE Q, ZHANG H J, ZHU M S, et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging[J]. Advanced Materials, 2017, 29(15): 1604847. [10] WU X H, WANG Z Y, YU M Z, et al. Stabilizing the MXenes by carbon nanoplating for developing hierarchical nanohybrids with efficient lithium storage and hydrogen evolution capability[J]. Advanced Materials, 2017, 29(24): 1607017. [11] ZHAO D, CHEN Z, YANG W J, et al. MXene (Ti3C2) vacancy-confined single-atom catalyst for efficient functionalization of CO2[J]. Journal of the American Chemical Society, 2019, 141(9): 4086-4093. [12] CAO S W, SHEN B J, TONG T, et al. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction[J]. Advanced Functional Materials, 2018, 28(21): 1800136. [13] BAI Y, YANG P, WANG L, et al. Ultrathin Bi4O5Br2 nanosheets for selective photocatalytic CO2 conversion into CO[J]. Chemical Engineering Journal, 2019, 360: 473-482. [14] LIU Y P, LI Y H, LI X Y, et al. Regulating electron-hole separation to promote photocatalytic H2 evolution activity of nanoconfined Ru/MXene/TiO2 catalysts[J]. ACS Nano, 2020, 14(10): 14181-14189. [15] ZHANG W B, XIAO X, WU Q F, et al. Facile synthesis of novel Mn-doped Bi4O5Br2 for enhanced photocatalytic NO removal activity[J]. Journal of Alloys and Compounds, 2020, 826: 154204. [16] ZHANG R R, JIN J Y, JIA L M, et al. Fabrication of CdS/Ti3C2/g-C3N4NS Z-scheme composites with enhanced visible light-driven photocatalytic activity[J]. Environmental Science and Pollution Research International, 2022, 29(11): 16371-16382. [17] BHARATH G, RAMBABU K, HAI A, et al. Highly selective etherification of fructose and 5-hydroxymethylfurfural over a novel Pd-Ru/MXene catalyst for sustainable liquid fuel production[J]. International Journal of Energy Research, 2021, 45(10): 14680-14691. [18] XI Q, YUE X P, FENG J Q, et al. Facile synthesis of 2D Bi4O5Br2/2D thin layer-Ti3C2 for improved visible-light photocatalytic hydrogen evolution[J]. Journal of Solid State Chemistry, 2020, 289: 121470. [19] HUANG H, DAI Q G, WANG X Y. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene[J]. Applied Catalysis B: Environmental, 2014, 158/159: 96-105. [20] TU X M, LUO S L, CHEN G X, et al. One-pot synthesis, characterization, and enhanced photocatalytic activity of a BiOBr-graphene composite[J]. Chemistry-A European Journal, 2012, 18(45): 14359-14366. [21] ZHANG X, YANG P, YANG B, et al. Synthesis of novel Bi/Bi4O5Br2 via a UV light irradiation for decomposing the oil field pollutants[J]. Inorganic Chemistry Communications, 2020, 122: 108297. [22] RAN J R, GAO G P, LI F T, et al. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production[J]. Nature Communications, 2017, 8: 13907. [23] BAI Y, CHEN T, WANG P Q, et al. Bismuth-rich Bi4O5X2 (X=Br, and I) nanosheets with dominant{101}facets exposure for photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2016, 304: 454-460. [24] LI J Y, DONG X A, SUN Y J, et al. Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts[J]. Applied Catalysis B: Environmental, 2018, 226: 269-277. [25] LOU X, SHANG J, WANG L, et al. Enhanced photocatalytic activity of Bi24O31Br10: constructing heterojunction with BiOI[J]. Journal of Materials Science & Technology, 2017, 33(3): 281-284. [26] LI R, FENG J Q, ZHANG X C, et al. In situ reorganization of Bi3O4Br nanosheet on the Bi24O31Br10 ribbon structure for superior visible-light photocatalytic capability[J]. Separation and Purification Technology, 2020, 247: 117007. |