[1] 谭志宣,夏洪伟.国内减碳现状及“双碳”目标实现途径[J].能源研究与管理,2022(1):13-18. TAN Z X, XIA H W. Current situation of domestic carbon reduction and ways to achieve the goal of “double carbon”[J]. Energy Research and Management, 2022(1): 13-18(in Chinese). [2] 周 进.我国“双碳”目标的现实条件及应对策略[J].上海节能,2022(2):135-138. ZHOU J. Realistic conditions and countermeasures strategy of “double carbon” goals in China[J]. Shanghai Energy Conservation, 2022(2): 135-138(in Chinese). [3] DOMINKOVIĆ D F, BAĆ EKOVIĆ I, PEDERSEN A S, et al. The future of transportation in sustainable energy systems: opportunities and barriers in a clean energy transition[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 1823-1838. [4] CHEN J M. Carbon neutrality: toward a sustainable future[J]. Innovation, 2021, 2(3): 100127. [5] YUAN M, THELLUFSEN J Z, LUND H, et al. The electrification of transportation in energy transition[J]. Energy, 2021, 236: 121564. [6] DENG J, BAE C, DENLINGER A, et al. Electric vehicles batteries: requirements and challenges[J]. Joule, 2020, 4(3): 511-515. [7] 姜华伟,刘亚飞,陈彦彬,等.锂离子电池三元正极材料研究及应用进展[J].人工晶体学报,2018,47(10):2205-2211. JIANG H W, LIU Y F, CHEN Y B, et al. Research progress on the ternary layered oxide cathode materials of lithium ion battery[J]. Journal of Synthetic Crystals, 2018, 47(10): 2205-2211(in Chinese). [8] MYUNG S T, MAGLIA F, PARK K J, et al. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Letters, 2017, 2(1): 196-223. [9] 况新亮,刘垂祥,熊 朋.锂离子电池产业分析及市场展望[J/OL].无机盐工业:1-15[2022-06-06].DOI:10.19964/j.issn.1006-4990.2022-0002. KUANG X L, LIU C C, XIONG P. Lithium-ion battery industry analysis and market outlook[J/OL]. Inorganic Salt Industry: 1-15[2022-06-06].DOI:10.19964/j.issn.1006-4990.2022-0002(in Chinese). [10] ZHANG S S. Problems and their origins of Ni-rich layered oxide cathode materials[J]. Energy Storage Materials, 2020, 24: 247-254. [11] 王 澎,窦悦珊,赵 星,等.高镍三元锂离子电池衰减机制研究展望[J].西南大学学报(自然科学版),2022,44(3):29-43. WANG P, DOU Y S, ZHAO X, et al. Prospectsof the research on performance degradation of nickel-rich ternary lithium-ion battery[J]. Journal of Southwest University (Natural Science Edition), 2022, 44(3): 29-43(in Chinese). [12] SU Y F, LI L W, CHEN G, et al. Strategies of removing residual lithium compounds on the surface of Ni-rich cathode materials [J]. Chinese Journal of Chemistry, 2021, 39(1): 189-198. [13] PARK K J, HWANG J Y, RYU H H, et al. Degradation mechanism of Ni-enriched NCA cathode for lithium batteries: are microcracks really critical? [J]. ACS Energy Letters, 2019, 4(6): 1394-1400. [14] MANTHIRAM A. A reflection on lithium-ion battery cathode chemistry[J]. Nature Communications, 2020, 11: 1550. [15] DOU S M. Review and prospect of layered lithium nickel manganese oxide as cathode materials for Li-ion batteries[J]. Journal of Solid State Electrochemistry, 2013, 17(4): 911-926. [16] LI Y T, ZHOU W D, CHEN X, et al. Mastering the interface for advanced all-solid-state lithium rechargeable batteries[J]. PNAS, 2016, 113(47): 13313-13317. [17] DUAN S, HUANG C, LIU M, et al. Competition between activation energy and migration entropy in lithium ion conduction in superionic NASICON-type Li1-3xGaxZr2(PO4)3[J]. Journal of Materials Chemistry A, 2021, 9(12): 7817-7825. [18] ROSSBACH A, TIETZ F, GRIESHAMMER S. Structural and transport properties of lithium-conducting NASICON materials[J]. Journal of Power Sources, 2018, 391: 1-9. [19] WANG L L, SUN X W, MA J, et al. Bidirectionally compatible buffering layer enables highly stable and conductive interface for 4.5 V sulfide-based all-solid-state lithium batteries[J]. Advanced Energy Materials, 2021, 11(32): 2100881. [20] XU H H, WANG S F, WILSON H, et al. Y-doped NASICON-type LiZr2(PO4)3 solid electrolytes for lithium-metal batteries[J]. Chemistry of Materials, 2017, 29(17): 7206-7212. [21] HUANG Y, CAO S, XIE X, et al. Improving the structure and cycling stability of Ni-rich layered cathodes by dual modification of yttrium doping and surface coating[J]. ACS Applied Materials & Interfaces, 2020, 12(17): 19483-19494. [22] WANG Y Y, GAO M Y, LIU S, et al. Yttrium surface gradient doping for enhancing structure and thermal stability of high-Ni layered oxide as cathode for Li-ion batteries[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7343-7354. [23] LI Y T, LIU M J, LIU K, et al. High Li+ conduction in NASICON-type Li1+xYxZr2-x(PO4)3 at room temperature[J]. Journal of Power Sources, 2013, 240: 50-53. [24] YANG X, HUANG X S, SHI H C, et al. Growth mechanisms for spherical Ni0.815Co0.15Al0.035(OH)2 precursors prepared via the ammonia complexation precipitation method[J]. Journal of Energy Chemistry, 2021, 53: 379-386. [25] 钟胜奎,胡 飘,刘乐通,等.尿素共沉淀法制备LiNi0.8Co0.2O2正极材料及其电化学性能[J].人工晶体学报,2014,43(7):1683-1687. ZHONG S K, HU P, LIU L T, et al. Synthesis and electrochemical performance of LiNi0.8Co0.2O2 cathode material by co-precipitation using urea[J]. Journal of Synthetic Crystals, 2014, 43(7): 1683-1687(in Chinese). |