[1] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422. [2] MORKOÇ H, STRITE S, GAO G B, et al. Large-band-gap SiC, Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies[J]. Journal of Applied Physics, 1994, 76(3): 1363-1398. [3] EDDY C R Jr, GASKILL D K. Silicon carbide as a platform for power electronics[J]. Science, 2009, 324(5933): 1398-1400. [4] LEE T H, BHUNIA S, MEHREGANY M. Electromechanical computing at 500 ℃ with silicon carbide[J]. Science, 2010, 329(5997): 1316-1318. [5] 任学民.SiC单晶生长技术及器件研究进展[J].半导体情报,1998,35(4):7-12. REN X M. Development of SiC single crystal growth and device study[J]. Semiconductor Information, 1998, 35(4): 7-12(in Chinese). [6] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [EB/OL]. [2021-03-13]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. People’s Republic of China, The 14th five-year plan for national economic and social development of the people’s Republic of China and the outline of long-term objectives for 2035[EB/OL]. [2021-03-13]. http://www.gov.cn/xinwen/2021-03/13/content_5592681.htm(in Chinese). [7] NISHINO S, HAZUKI Y, MATSUNAMI H, et al. Chemical vapor deposition of single crystalline β-SiC films on silicon substrate with sputtered intermediate layer [J]. Journal of The Electrochemical Society, 1980, 127 (12): 2674-2680. [8] NISHINO S, POWELL J A, WILL H A. Production of large-area single-crystal wafers of cubic SiC for semiconductor devices[J]. Applied Physics Letters, 1983, 42(5): 460-462. [9] TANAKA S, KERN R S, DAVIS R F. Effects of gas flow ratio on silicon carbide thin film growth mode and polytype formation during gas-source molecular beam epitaxy[J]. Applied Physics Letters, 1994, 65(22): 2851-2853. [10] SUN Y, AYABE T, MIYASATO T. Influence of SiC cover layer of Si substrate on properties of cubic SiC films prepared by hydrogen plasma sputtering[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 7A): L714-L716. [11] RIMAI L, AGER R, LOGOTHETIS E M, et al. Preparation of oriented silicon carbide films by laser ablation of ceramic silicon carbide targets[J]. Applied Physics Letters, 1991, 59(18): 2266-2268. [12] ZEHNDER T, BLATTER A, BÄCHLI A. SiC films prepared by pulsed excimer laser deposition[J]. Thin Solid Films, 1994, 241(1/2): 138-141. [13] WANG Y X, WEN J, GUO Z, et al. The preparation of single-crystal 4H-SiC film by pulsed XeCl laser deposition[J]. Thin Solid Films, 1999, 338(1/2): 93-99. [14] 冯 淦,孙永强,钱卫宁,等.4H-SiC半导体同质外延生长技术进展[J].人工晶体学报,2020,49(11):2128-2138. FENG G, SUN Y Q, QIAN W N, et al. Progress in homoepitaxial growth of 4H-SiC semiconductor[J]. Journal of Synthetic Crystals, 2020, 49(11): 2128-2138(in Chinese). [15] DAIGO Y, ISHII S, KOBAYASHI T. Impacts of surface C/Si ratio on in-wafer uniformity and defect density of 4H-SiC homo-epitaxial films grown by high-speed wafer rotation vertical CVD[J]. Japanese Journal of Applied Physics, 2019, 58(SB): SBBK06. [16] KURODA N, SHIBAHARA K, YOO W, et al. Step-controlled VPE growth of SiC single crystals at low temperatures[C]//Extended Abstracts of the 1987 Conference on Solid State Devices and Materials. August 25-27, 1987. Nippon Toshi Center, Tokyo, Japan. The Japan Society of Applied Physics, 1987. [17] UEDA T, NISHINO H, MATSUNAMI H. Crystal growth of SiC by step-controlled epitaxy[J]. Journal of Crystal Growth, 1990, 104(3): 695-700. [18] KONG H, KIM H J, EDMOND J A, et al. Growth, doping, device development and characterization of CVD beta-SiC epilayers on Si(100) and alpha-SiC(0001)[J]. MRS Proceedings, 1987, 97: 233. [19] LA VIA F, GALVAGNO G, FOTI G, et al. 4H SiC epitaxial growth with chlorine addition[J]. Chemical Vapor Deposition, 2006, 12(8/9): 509-515. [20] KIMOTO T, NISHINO H, YOO W S, et al. Growth mechanism of 6H-SiC in step-controlled epitaxy[J]. Journal of Applied Physics, 1993, 73(2): 726-732. [21] ITO M, STORASTA L, TSUCHIDA H. Development of a high rate 4H-SiC epitaxial growth technique achieving large-area uniformity[J]. Materials Science Forum, 2008, 600/601/602/603: 111-114. [22] KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology[M]. Singapore: John Wiley & Sons Singapore Pte. Ltd, 2014. [23] LEONE S, PEDERSEN H, BEYER F C, et al. Chloride-based CVD of 4H-SiC at high growth rates on substrates with different off-angles[J]. Materials Science Forum, 2012, 717/718/719/720: 113-116. [24] LEONE S, HENRY A, JANZÉN E, et al. Epitaxial growth of SiC with chlorinated precursors on different off-angle substrates[J]. Journal of Crystal Growth, 2013, 362: 170-173. [25] CHOKAWA K, DAIGO Y, MIZUSHIMA I, et al. First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC(0001) surface under conventional CVD and Halide CVD environments[J]. Japanese Journal of Applied Physics, 2021, 60(8): 085503. [26] HENRY A, LEONE S, BEYER F C, et al. SiC epitaxy growth using chloride-based CVD[J]. Physica B: Condensed Matter, 2012, 407(10): 1467-1471. [27] LEONE S, MAUCERI M, PISTONE G, et al. SiC-4H epitaxial layer growth using trichlorosilane (TCS) as silicon precursor[J]. Materials Science Forum, 2006, 527/528/529: 179-182. [28] PEDERSEN H, LEONE S, HENRY A, et al. Very high growth rate of 4H-SiC using MTS as chloride-based precursor[J]. Materials Science Forum, 2008, 600/601/602/603: 115-118. [29] KOTAMRAJU S P, KRISHNAN B, KOSHKA Y. Epitaxial growth of 4H-SiC with high growth rate using CH3Cl and SiCl4 chlorinated growth precursors[J]. Materials Science Forum, 2010, 645/646/647/648: 103-106. [30] DEIVENDRAN B, SHINDE V M, KUMAR H, et al. 3D Modeling and optimization of SiC deposition from CH3SiCl3/H2 in a commercial hot wall reactor[J]. Journal of Crystal Growth, 2021, 554: 125944. [31] MACMILLAN M F, LOBODA M J, CHUNG G Y, et al. Homoepitaxial growth of 4H-SiC using a chlorosilane silicon precursor[J]. Materials Science Forum, 2006, 527/528/529: 175-178. [32] NuFlare Technology Inc. EPIREVOTM S6 6″ single-wafer SiC epitaxial reactor[EB/OL]. http://www.nuflare.co.jp/english/products/epitaxial/EPIREVO_S6.html. [33] AIXTRON (Group), AIX 2800G4-TM (IC2) Brochure [EB/OL]. https://www.aixtron.com/en/products/AIX%202800G4-TM_p89. [34] BURK A A Jr, ROWLAND L B. Homoepitaxial VPE growth of SiC active layers[J]. Physica Status Solidi (b), 1997, 202(1): 263-279. [35] KIMOTO T, ITOH A, MATSUNAMI H. Step-controlled epitaxial growth of high-quality SiC layers[J]. Physica Status Solidi (b), 1997, 202(1): 247-262. [36] RUPP R, MAKAROV Y N, BEHNER H, et al. Silicon carbide epitaxy in a vertical CVD reactor: experimental results and numerical process simulation[J]. Physica Status Solidi (b), 1997, 202(1): 281-304. [37] KORDINA O, HALLIN C, HENRY A, et al. Growth of SiC by “hot-wall” CVD and HTCVD[J]. Physica Status Solidi (b), 1997, 202(1): 321-334. [38] HENRY A, UL HASSAN J, P BERGMAN J, et al. Thick silicon carbide homoepitaxial layers grown by CVD techniques[J]. Chemical Vapor Deposition, 2006, 12(8/9): 475-482. [39] NISHIZAWA S, PONS M. Growth and doping modeling of SiC-CVD in a horizontal hot-wall reactor[J]. Chemical Vapor Deposition, 2006, 12(8/9): 516-522. [40] VIA F L, IZZO G, MAUCERI M, et al. 4H-SiC epitaxial layer growth by trichlorosilane (TCS)[J]. Journal of Crystal Growth, 2008, 311(1): 107-113. [41] KIMOTO T, GAN F, HIYOSHI T, et al. Defect control in growth and processing of 4H-SiC for power device applications[J]. Materials Science Forum, 2010, 645/646/647/648: 645-650. [42] BURK A A, O'LOUGHLIN M J, PAISLEY M J, et al. Large area SiC epitaxial layer growth in a warm-wall planetary VPE reactor[M]//Materials Science Forum. Stafa: Trans Tech Publications Ltd., 2005: 137-140. [43] THOMAS B, HECHT C, STEIN R A, et al. Challenges in large-area multi-wafer SiC epitaxy for production needs[J]. Materials Science Forum, 2006, 527/528/529: 135-140. [44] 刘子优,肖蕴章,陈炳安,等.一种外延生长设备的反应室结构:CN111172587A[P].2021-03-16. LIU Z Y, XIAO Y Z, CHEN B A, et al. A reaction chamber of epitaxy equipment: China, CN111172587A[P].2021-03-16(in Chinese). [45] 蒲 勇,卢 勇,赵 鹏.加热器零部件(中圈):CN306895205S[P].2021-10-22. PU Y, LU P, ZHAO P. Heating part (middle ring): China, CN306895205S[P].2021-10-22(in Chinese). [46] 芯三代半导体科技(苏州)有限公司.一种碳化硅外延生长装置:CN114059164A[P].2022-02-18. SiCentury Semiconductor Technology (Suzhou) Co., Ltd. A SiC epi growth equipment: China, CN114059164A[P].2022-02-18 (in Chinese). [47] 左 然,张 红,刘祥林.径向三重流MOCVD反应器输运过程的数值模拟[J].半导体学报,2005,26(5):977-982. ZUO R, ZHANG H, LIU X L. Numerical study of transport phenomena in a radial flow MOCVD reactor with three-separate vertical inlets[J]. Chinese Journal of Semiconductors, 2005, 26(5): 977-982(in Chinese). [48] 冯兰胜,过润秋,张进成.MOCVD反应室流场分析及其对GaN生长的影响[J].西安电子科技大学学报,2017,44(1):171-175. FENG L S, GUO R Q, ZHANG J C. Effect of reactor geometry on GaN in a vertical MOCVD reactor[J]. Journal of Xidian University, 2017, 44(1): 171-175(in Chinese). [49] MITROVIC B, GURARY A, KADINSKI L. On the flow stability in vertical rotating disc MOCVD reactors under a wide range of process parameters[J]. Journal of Crystal Growth, 2006, 287(2): 656-663. [50] 张淑蓉.石墨加热元件在真空炉中的应用研究[J].工业加热,2012,41(5):66-68. ZHANG S R. The application research of the graphite heating elements to the vacuum furnace[J]. Industrial Heating, 2012, 41(5): 66-68(in Chinese). [51] DAIGO Y, WATANABE T, ISHIGURO A, et al. Impact of precise temperature control for 4H-SiC epitaxy on large diameter wafers[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2020: 1-4. [52] 蒲 勇,彭学新.MOCVD反应管中石墨基座高温控制技术研究[J].南昌大学学报(工科版),2003,25(2):55-58. PU Y, PENG X X. Study on control of high temperature of susceptor in MOCVD reactor[J]. Journal of Nanchang University (Engineering & Technology), 2003, 25(2): 55-58(in Chinese). [53] 杨超普,方文卿,刘明宝,等.MOCVD原位红外测温方法的比较研究[J].应用光学,2016,37(2):297-302. YANG C P, FANG W Q, LIU M B, et al. Comparative study on in situ infrared thermometry methods of MOCVD[J]. Journal of Applied Optics, 2016, 37(2): 297-302(in Chinese). [54] DAIGO Y, WATANABE T, ISHIGURO A, et al. Reduction of harmful effect due to by-product in CVD reactor for 4H-SiC epitaxy[C]//2020 International Symposium on Semiconductor Manufacturing (ISSM). December 15-16, 2020, Tokyo, Japan. IEEE, 2020: 1-4. |