人工晶体学报 ›› 2022, Vol. 51 ›› Issue (7): 1284-1299.
杨洋, 刘峙嵘
收稿日期:
2022-04-10
出版日期:
2022-07-15
发布日期:
2022-08-11
通讯作者:
刘峙嵘,博士,教授。E-mail:zhrliu@ecut.edu.cn
作者简介:
杨 洋(1996—),男,吉林省人,硕士研究生。E-mail:1132514203@qq.com
基金资助:
YANG Yang, LIU Zhirong
Received:
2022-04-10
Online:
2022-07-15
Published:
2022-08-11
摘要: 核辐射探测是指用各种核辐射探测器来得到核辐射信息的过程,在军用、民用和科研等领域具有广泛的应用。作为核辐射探测核心的核辐射探测器,主要分为气体探测器、闪烁体探测器和半导体探测器。相比于气体探测器,闪烁体探测器和半导体探测器都需要晶体作为核心材料,晶体质量的品质在很大程度上决定了探测器性能的上限。为了获得性能更好的探测器,人们对探测器用单晶材料的生长方法进行了大量的研究。本文综述了近几年核辐射探测单晶生长方法研究的最新进展,总结了目前主流的晶体生长方法,包括溶液法、熔体法、气相法等,并对不同晶体的主要生长方法进行了归纳。
中图分类号:
杨洋, 刘峙嵘. 核辐射探测单晶生长方法研究进展[J]. 人工晶体学报, 2022, 51(7): 1284-1299.
YANG Yang, LIU Zhirong. Research Progress of Single Crystal Growth Methods for Nuclear Radiation Detection[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(7): 1284-1299.
[1] 任国浩.无机闪烁晶体在我国的发展史[J].人工晶体学报,2019,48(8):1373-1385. REN G H. Development history of inorganic scintillation crystals in China[J]. Journal of Synthetic Crystals, 2019, 48(8): 1373-1385(in Chinese). [2] 覃皓明,申南南,何亦辉.熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J].人工晶体学报,2021,50(10):1830-1843. QIN H M, SHEN N N, HE Y H. Research progress on the melt-grown inorganic perovskite semiconductor single crystals and devices for nuclear radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1830-1843(in Chinese). [3] 武 彤,王 玲,许天照,等.医疗CT用(Ce,Gd)3(Ga,Al)5O12(Ce∶GGAG)闪烁体的研究进展[J].应用技术学报,2021,21(2):109-125. WU T, WANG L, XU T Z, et al. Recent progress of(Ce, Gd)3(Ga, Al)5O12(Ce∶GGAG)scintillator for medical CT application[J]. Journal of Technology, 2021, 21(2): 109-125(in Chinese). [4] JOHNS P M, NINO J C. Room temperature semiconductor detectors for nuclear security[J]. Journal of Applied Physics, 2019, 126(4): 040902. [5] RÖNTGEN W C. On a new kind of rays[J]. Science, 1896, 3(59): 227-231. [6] 武 蕊,范东海,康 阳,等.半导体辐射探测材料与器件研究进展[J].人工晶体学报,2021,50(10):1813-1829. WU R, FAN D H, KANG Y, et al. Research progress on semiconductor materials and devices for radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813-1829(in Chinese). [7] OKAZAKI K, FUKUSHIMA H, NAKAUCHI D, et al. Investigation of Er∶Bi4Ge3O12 single crystals emitting near-infrared luminescence for scintillation detectors[J]. Journal of Alloys and Compounds, 2022, 903: 163834. [8] MIRZAEI A, HUH J S, KIM S S, et al. Room temperature hard radiation detectors based on solid state compound semiconductors: an overview[J]. Electronic Materials Letters, 2018, 14(3): 261-287. [9] YU D J, WANG P, CAO F, et al. Two-dimensional halide perovskite as β-ray scintillator for nuclear radiation monitoring[J]. Nature Communications, 2020, 11: 3395. [10] ZHANG C, LIU X L, CHEN J, et al. Solution and solid-phase growth of bulk halide perovskite single crystals[J]. Chinese Journal of Chemistry, 2021, 39(5): 1353-1363. [11] 丁 洁.杂化钙钛矿单晶光电探测器[D].北京:清华大学,2019. DING J. Hybrid perovskite single crystal photodetectors[D]. Beijing: Tsinghua University, 2019(in Chinese). [12] 王文贞.探测器用卤化物钙钛矿晶体的生长及其物理性能的研究[D].上海:上海大学,2020. WANG W Z. The growth and physical performances of halide perovskite single crystals for detectors[D]. Shanghai: Shanghai University, 2020(in Chinese). [13] ANDRIČEVIĆ P, FRAJTAG P, LAMIRAND V P, et al. Kilogram-scale crystallogenesis of halide perovskites for gamma-rays dose rate measurements[J]. Advanced Science, 2021, 8(2): 2001882. [14] SAIDAMINOV M I, ABDELHADY A L, MURALI B, et al. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization[J]. Nature Communications, 2015, 6: 7586. [15] SAIDAMINOV M I, ABDELHADY A L, MACULAN G, et al. Retrograde solubility of formamidinium and methylammonium lead halide perovskites enabling rapid single crystal growth[J]. Chemical Communications, 2015, 51(100): 17658-17661. [16] LIU X, XU M, HAO Y Y, et al. Solution-grown formamidinium hybrid perovskite (FAPbBr3) single crystals for α-particle and γ-ray detection at room temperature[J]. ACS Applied Materials & Interfaces, 2021, 13(13): 15383-15390. [17] FENG Y X, PAN L, WEI H T, et al. Low defects density CsPbBr3 single crystals grown by an additive assisted method for gamma-ray detection[J]. Journal of Materials Chemistry C, 2020, 8(33): 11360-11368. [18] ZHANG H J, WANG F B, LU Y F, et al. High-sensitivity X-ray detectors based on solution-grown caesium lead bromide single crystals[J]. Journal of Materials Chemistry C, 2020, 8(4): 1248-1256. [19] LI L Q, LIU X, ZHANG H J, et al. Enhanced X-ray sensitivity of MAPbBr3 detector by tailoring the interface-states density[J]. ACS Applied Materials & Interfaces, 2019, 11(7): 7522-7528. [20] RONG S S, XIAO Y Q, JIANG J X, et al. Strongly enhanced photoluminescence and photoconductivity in erbium-doped MAPbBr3 single crystals[J]. The Journal of Physical Chemistry C, 2020, 124(16): 8992-8998. [21] CHEN X M, ZHANG F, GE Y, et al. Centimeter-sized Cs4PbBr6 crystals with embedded CsPbBr3 nanocrystals showing superior photoluminescence: nonstoichiometry induced transformation and light-emitting applications[J]. Advanced Functional Materials, 2018, 28(16): 1706567. [22] LI Y, SHAO W Y, CHEN L, et al. Lead-halide Cs4PbBr6 single crystals for high-sensitivity radiation detection[J]. NPG Asia Materials, 2021, 13: 40. [23] YAO F, PENG J L, LI R M, et al. Room-temperature liquid diffused separation induced crystallization for high-quality perovskite single crystals[J]. Nature Communications, 2020, 11: 1194. [24] WEI S Y, TIE S J, SHEN K, et al. High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal[J]. Advanced Optical Materials, 2021, 9(22): 2101351. [25] ZHANG J Y, LI A F, LI B H, et al. Top-seed solution-based growth of perovskite Cs3Bi2I9 single crystal for high performance X-ray detection[J]. ACS Photonics, 2022, 9(2): 641-651. [26] HYUN K, KIM S J, TAISHI T. Effect of cobalt addition to Si-Cr solvent in top-seeded solution growth[J]. Applied Surface Science, 2020, 513: 145798. [27] ADELL I, PUJOL M C, SOLÉ R M, et al. Single crystal growth, optical absorption and luminescence properties under VUV-UV synchrotron excitation of type Ⅲ Pr3+∶KGd(PO3)4[J]. Scientific Reports, 2020, 10: 6712. [28] 陈 成.高能射线探测器用CsPbBr3单晶熔体法生长及离子迁移特性研究[D].武汉:华中科技大学,2019. CHEN C. The melting growth and ionic transport characteristics of CsPbBr3 single crystals for high-energy radiation detection use[D]. Wuhan: Huazhong University of Science and Technology, 2019(in Chinese). [29] 陈永仁.室温辐射探测器材料碲镁镉晶体的生长及性能表征[D].西安:长安大学,2020. CHEN Y R. Growth and characterization of magnesium magnesium telluride crystals at room temperature radiation detector[D]. Xi’an: Changan University, 2020(in Chinese). [30] 高 力.探测器级钒掺杂碲锰镉晶体生长及性能表征[D].西安:长安大学,2020. GAO L. Analyses of crystal growth and performance characterization of detector-grade vanadium doped cadmium manganese telluride crystal[D]. Xi’an: Changan University, 2020(in Chinese). [31] 张明智.室温核辐射探测用CsPbBr3单晶的熔体法生长及其性能研究[D].武汉:华中科技大学,2018. ZHANG M Z. The melting growth and properties of CsPbBr3 single crystals for room temperature nuclear radiation detection use[D]. Wuhan: Huazhong University of Science and Technology, 2018(in Chinese). [32] 章 政.K2LaX5∶Ce(X=Cl,Br)复合稀土卤化物闪烁晶体的生长与闪烁性能研究[D].宁波:宁波大学,2019. ZHANG Z. The growth and luminescence properties of K2LaX5∶Ce(X=Cl, Br) complex rare-earth halide scintillation[D]. Ningbo: Ningbo University, 2019(in Chinese). [33] 介万奇.Bridgman法晶体生长技术的研究进展[J].人工晶体学报,2012,41(S1):24-35. JIE W Q. Progress of bridgman crystal growth technology[J]. Journal of Synthetic Crystals, 2012, 41(S1): 24-35(in Chinese). [34] 李 涛.新型核辐射探测器用CdTe基化合物晶体生长与性能表征[D].西安:西安工业大学,2019. LI T. Investigations on growth and properties of CdTe-based compound crystals for nuclear radiation detection[D]. Xi'an: Xi'an Technological University, 2019(in Chinese). [35] 王 谦,王京康,成双良,等.零维钙钛矿结构Cs3Cu2Br5单晶的生长和X射线探测性能[J].人工晶体学报,2021,50(10):1919-1924. WANG Q, WANG J K, CHENG S L, et al. Crystal growth and X-ray detection performance of 0D Cs3Cu2Br5 single crystal perovskite[J]. Journal of Synthetic Crystals, 2021, 50(10): 1919-1924(in Chinese). [36] 孙啟皓,郝莹莹,张 鑫,等.Cs3Bi2I9晶体的生长及辐射探测性能[J].人工晶体学报,2021,50(10):1907-1912. SUN Q H, HAO Y Y, ZHANG X, et al. Growth and radiation detection properties of Cs3Bi2I9 crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1907-1912(in Chinese). [37] HE Y H, STOUMPOS C C, HADAR I, et al. Demonstration of energy-resolved γ-ray detection at room temperature by the CsPbCl3 perovskite semiconductor[J]. Journal of the American Chemical Society, 2021, 143(4): 2068-2077. [38] YUAN L Y, NI H H, CHEN J F, et al. Effects of annealing on the optical and scintillation properties of reddish Bi4Ge3O12 single crystals[J]. Ceramics International, 2021, 47(9): 11856-11861. [39] LUAN L J, ZHANG J W, WANG T, et al. Vanadium doped Cd0.9Mn0.1Te crystal and its optical and electronic properties[J]. Journal of Crystal Growth, 2017, 459: 124-128. [40] 杜园园,姜维春,陈 晓,等.Te溶剂Bridgman法CdMnTe晶体核辐射探测器的制备和表征[J].人工晶体学报,2021,50(10):1892-1899. DU Y Y, JIANG W C, CHEN X, et al. Preparation and characterization of CdMnTe crystal nuclear radiation detector by Te solvent bridgman method[J]. Journal of Synthetic Crystals, 2021, 50(10): 1892-1899(in Chinese). [41] MATEI L, HAWRAMI R, BULIGA V, et al. Lithium indium diselenide: an advanced material for neutron detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2021, 1020: 165898. [42] YAMAJI A, KUROSAWA S, YOSHIKAWA A. Crystal growth and luminescence properties of phenanthrene for neutron detection[J]. Journal of Crystal Growth, 2022, 581: 126494. [43] YAMAJI A, KUROSAWA S, OHASHI Y, et al. Crystal growth and optical properties of organic crystals for neutron scintillators[J]. Plasma and Fusion Research, 2018, 13: 2405011. [44] YAMATO S, YAMAJI A, KUROSAWA S, et al. Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection[J]. Optical Materials, 2019, 94: 58-63. [45] YAMAJI A, YAMATO S, KUROSAWA S, et al. Crystal growth and scintillation properties of carbazole for neutron detection[J]. IEEE Transactions on Nuclear Science, 2020, 67(6): 1027-1031. [46] 许文斌,王海丽,李 辉,等.对三联苯有机晶体的生长及性能[J].人工晶体学报,2021,50(10):1979-1983. XU W B, WANG H L, LI H, et al. Growth and properties of p-terphenyl organic crystals[J]. Journal of Synthetic Crystals, 2021, 50(10): 1979-1983(in Chinese). [47] 何君雨,李 雯,魏钦华,等.1英寸Cs2LiLaBr6∶Ce闪烁晶体的生长及性能研究[J].人工晶体学报,2021,50(10):1879-1882. HE J Y, LI W, WEI Q H, et al. Growth and properties of 1-inch Cs2LiLaBr6∶Ce scintillation crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1879-1882(in Chinese). [48] 侯越云,桂 强,张春生,等.Cs2LiYCl6∶Ce晶体的n/γ双探测闪烁性能研究[J].人工晶体学报,2021,50(10):1933-1939. HOU Y Y, GUI Q, ZHANG C S, et al. Scintillation properties of Cs2LiYCl6∶Ce crystal for neutron and gamma dual detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1933-1939(in Chinese). [49] 王绍涵,吴云涛,李焕英,等.基质组分配比对Cs2LiYCl6∶Ce晶体生长及闪烁性能的影响[J].人工晶体学报,2021,50(10):1925-1932. WANG S H, WU Y T, LI H Y, et al. Effect of matrix composition ratio on the growth and scintillation properties of Cs2LiYCl6∶Ce crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1925-1932(in Chinese). [50] 程 冉.提拉法生长设备研制及大尺寸YSO∶Ce闪烁晶体生长研究[D].武汉:华中科技大学,2017. CHENG R. Development of scintillation crystal Czochralski method equipment, and growth of YSO∶Ce scintillation crystal with large size[D]. Wuhan: Huazhong University of Science and Technology, 2017(in Chinese). [51] 狄聚青,刘运连,滕 飞,等.ø80 mm×200 mm级Ce∶LYSO晶体的生长与闪烁性能研究[J].人工晶体学报,2019,48(3):374-378. DI J Q, LIU Y L, TENG F, et al. Growth and scintillation properties of Ce∶LYSO crystal with size of ø80 mm×200 mm[J]. Journal of Synthetic Crystals, 2019, 48(3): 374-378(in Chinese). [52] 王 佳,岑 伟,丁雨憧,等. ø100 mm级Ca∶Ce∶LYSO闪烁晶体生长及闪烁性能研究[J].人工晶体学报,2021,50(10):1946-1950. WANG J, CEN W, DING Y C, et al. Growth and scintillation properties of ø100 mm Ca∶Ce∶LYSO crystal[J]. Journal of Synthetic Crystals, 2021, 50(10): 1946-1950(in Chinese). [53] 邵明国.钨酸铅晶体的生长及光学性能研究[D].温州:温州大学,2012. SHAO M G. Study on the growth and optical properties of lead tungstate[D]. Wenzhou: Wenzhou University, 2012 (in Chinese). [54] FRANK-ROTSCH C, DROPKA N, GLACKI A, et al. VGF growth of GaAs utilizing heater-magnet module[J]. Journal of Crystal Growth, 2014, 401: 702-707. [55] BALBAŞı Ö B, ÜNAL M, GENÇ A M, et al. Investigation of seeded vertical gradient freeze (VGF) growth of CdZnTe bulk crystals[J]. Journal of Crystal Growth, 2022, 584: 126573. [56] YANG J, LU W, DUAN M L, et al. VGF growth of high quality InAs single crystals with low dislocation density[J]. Journal of Crystal Growth, 2020, 531: 125350. [57] 邹征刚.微下拉法生长的铈掺杂LuAG/Al2O3和(Lu2/3Gd1/3)AG/Al2O3共晶的结构与发光性能研究[D].赣州:江西理工大学,2018. ZOU Z G. Structure and luminescence properties of cerium doped LuAG/Al2O3 and (Lu2/3Gd1/3)AG/Al2O3 eutectic grown by micro pull-down method[D]. Ganzhou: Jiangxi University of Science and Technology, 2018(in Chinese). [58] LU W, XU J, SONG Q S, et al. Spectroscopic properties of Tm∶Bi4Ge3O12 crystals grown by the micro-pulling-down method[J]. Journal of Luminescence, 2021, 238: 118199. [59] 马云峰,徐家跃,蒋毅坚,等.面向集装箱安检应用的Mg4Ta2O9闪烁晶体及其掺杂改性[J].人工晶体学报,2021,50(10):1870-1878. MA Y F, XU J Y, JIANG Y J, et al. Scintillation crystal Mg4Ta2O9 and its doping modification for container security applications[J]. Journal of Synthetic Crystals, 2021, 50(10): 1870-1878(in Chinese). [60] 陈军军.光学浮区法制备β-Ga2O3基晶体及其性能研究[D].沈阳:东北大学,2018. CHEN J J. Study on the preparation of crystal based on β-Ga2O3 by optical floating zone method and its properties[D]. Shenyang: Northeastern University, 2018 (in Chinese). [61] 黄诗敏,万欢欢,杨 帆,等. (Gd0.99-xYxCe0.01)2Si2O7晶体的生长及发光特性[J].人工晶体学报,2021,50(10):1951-1956. HUANG S M, WAN H H, YANG F, et al. Growth and crystal luminescence properties of cerium doped yttrium-gadolinium pyrosilicate[J]. Journal of Synthetic Crystals, 2021, 50(10): 1951-1956(in Chinese). [62] YUAN D S, MORETTI F, PERRODIN D, et al. Modified floating-zone crystal growth of Mg4Ta2O9 and its scintillation performance[J]. CrystEngComm, 2020, 22(20): 3497-3504. [63] 胡伟杰.物理气相传输法生长氮化铝晶体的研究[D].北京:中国科学院物理研究所,2020. HU W J. Studies of aluminum nitride crystals grown by physical vapor transport method[D]. Beijing: Institute of Physics, Chinese Academy of Sciences, 2020(in Chinese). [64] YANG N J, LI H, WANG G, et al. A study of nucleation at initial growth stage of SiC single crystal by physical vapor transport[J]. Journal of Crystal Growth, 2022, 585: 126591. [65] KIM S K, JUNG E Y, LEE M H. Defect-induced luminescence quenching of 4H-SiC single crystal grown by PVT method through a control of incorporated impurity concentration[J]. Compounds, 2022, 2(1): 68-79. [66] WANG G D, ZHANG L, WANG Y, et al. Effect of temperature gradient on AlN crystal growth by physical vapor transport method[J]. Crystal Growth & Design, 2019, 19(11): 6736-6742. [67] 冯登满.二硫化钛的制备及其高压物性研究[D].长春:吉林大学,2021. FENG D M. Study of the synthesis and physical properties of titanium disulfide under high pressure[D]. Changchun: Jilin University, 2021(in Chinese). [68] SWIERKOWSKI S P, ARMANTROUT G A, WICHNER R. Recent advances with HgI2 X-ray detectors[J]. IEEE Transactions on Nuclear Science, 1974, 21(1): 302-304. [69] WEI Y C, LIU C Y, MA E, et al. Optical properties of mid-infrared Cr2+∶ZnSe single crystals grown by chemical vapor transporting with NH4Cl[J]. Optical Materials Express, 2021, 11(3): 664. [70] HE Y H, DAS S, LIU Z F, et al. Controlling the vapor transport crystal growth of Hg3Se2I2 hard radiation detector using organic polymer[J]. Crystal Growth & Design, 2019, 4: 2074-2080. |
[1] | 罗月婷, 肖黎, 陈远豪, 梁昌兴, 龚恒翔. 雾化辅助化学气相沉积法氧化镓薄膜生长研究[J]. 人工晶体学报, 2022, 51(7): 1163-1168. |
[2] | 罗东, 贾伟, 王英民, 戴鑫, 贾志刚, 董海亮, 李天保, 王利忠, 许并社. p型4H-SiC单晶衬底表征及第一性原理计算[J]. 人工晶体学报, 2022, 51(7): 1169-1176. |
[3] | 张晶, 刘丁. ø300 mm直拉硅单晶生长过程中的变晶现象及其影响因素[J]. 人工晶体学报, 2022, 51(7): 1185-1193. |
[4] | 丁言国, 叶崇志. YAlO3∶Ce晶体的生长及性能研究[J]. 人工晶体学报, 2022, 51(6): 965-972. |
[5] | 吴新栋, 张潮, 刘晓霖. 钙钛矿及类钙钛矿热致变色单晶材料的研究进展[J]. 人工晶体学报, 2022, 51(6): 1099-1109. |
[6] | 王志文, 马红安, 陈良超, 蔡正浩, 贾晓鹏. 硼协同掺杂金刚石单晶的高温高压合成[J]. 人工晶体学报, 2022, 51(5): 830-840. |
[7] | 由存, 赵巍, 王欣, 董书山, 陶强, 朱品文. 过渡金属轻元素化合物的高温高压制备[J]. 人工晶体学报, 2022, 51(5): 881-892. |
[8] | 王若铮, 闫秀良, 彭博, 林芳, 魏强, 王宏兴. 高质量硼掺杂单晶金刚石同质外延及电学性质研究[J]. 人工晶体学报, 2022, 51(5): 893-900. |
[9] | 殷梓萌, 郑凯文, 邹幸洁, 路鑫宇, 陈凯, 叶煜聪, 胡文晓, 陶涛. 人造金刚石单晶薄膜的制备及表面形貌优化[J]. 人工晶体学报, 2022, 51(5): 901-909. |
[10] | 温海浪, 陆静, 李晨, 胡光球. 大尺寸单晶金刚石磨抛一体化加工研究[J]. 人工晶体学报, 2022, 51(5): 941-947. |
[11] | 刘曼曼, 汪跃群, 熊俊杰, 张文杰, 孔舒燕, 杨晓明, 王祖建, 龙西法, 何超. 高居里温度铁电单晶PIN-PT的机电性能[J]. 人工晶体学报, 2022, 51(4): 579-586. |
[12] | 聂媛, 许安涛, 李尚升, 胡美华, 赵法卿, 赵桂平, 黄国锋, 李战厂, 周振翔, 王蒙召, 陈珈希, 周绪彪. 以磷化铁为添加剂沿(111)面生长磷掺杂金刚石大单晶[J]. 人工晶体学报, 2022, 51(4): 587-593. |
[13] | 黄鸣, 王维. 配合参数对单晶炉驱动系统的影响分析[J]. 人工晶体学报, 2022, 51(4): 594-599. |
[14] | 张国欣, 宁博, 赵杨, 刘绍祥, 石轩, 赵洪泉. SnSxSe2-x单晶纳米片的可控制备与表征[J]. 人工晶体学报, 2022, 51(4): 611-619. |
[15] | 卢嘉铮, 张辉, 郑丽丽, 马远, 宋德鹏. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报, 2022, 51(3): 371-384. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||