[1] LI L, XU K, WANG Y H, et al. Enhanced persistent luminescence and photocatalytic properties of Ga2O3∶Cr3+ by In3+ doping[J]. Optical Materials Express, 2016, 6(4): 1122. [2] OSHIMA T, OKUNO T, FUJITA S. Ga2O3thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors[J]. Japanese Journal of Applied Physics, 2007, 46(11): 7217-7220. [3] TRINCHI A, WLODARSKI W, LI Y X. Hydrogen sensitive Ga2O3 Schottky diode sensor based on SiC[J]. Sensors and Actuators B: Chemical, 2004, 100(1/2): 94-98. [4] OSHIMA Y, KAWARA K, SHINOHE T, et al. Epitaxial lateral overgrowth of α-Ga2O3 by halide vapor phase epitaxy[J]. APL Materials, 2018, 7(2): 022503. [5] LV Y, MA J, MI W, et al. Characterization of β-Ga2O3 thin films on sapphire (0001) using metal-organic chemical vapor deposition technique[J]. Vacuum, 2012, 86(12): 1850-1854. [6] KIM H W, KIM N H. Annealing effects on the properties of Ga2O3 thin films grown on sapphire by the metal organic chemical vapor deposition[J]. Applied Surface Science, 2004, 230(1/2/3/4): 301-306. [7] TSAI M F, CHANG S H G, CHENG F Y, et al. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy[J]. ACS Nano, 2013, 7(6): 5330-5342. [8] GONZALO A, NOGALES E, LORENZ K, et al. Raman and cathodoluminescence analysis of transition metal ion implanted Ga2O3 nanowires[J]. Journal of Luminescence, 2017, 191: 56-60. [9] WANG X S, SITU J Q, YING X Y, et al. β-Ga2O3∶Cr3+ nanoparticle: a new platform with near infrared photoluminescence for drug targeting delivery and bio-imaging simultaneously[J]. Acta Biomaterialia, 2015, 22: 164-172. [10] ZHANG Y J, YAN J L, LI Q S, et al. Optical and structural properties of Cu-doped β-Ga2O3 films[J]. Materials Science and Engineering: B, 2011, 176(11): 846-849. [11] NOGALES E, GARCÍA J A, MÉNDEZ B, et al. Visible and infrared luminescence study of Er doped β-Ga2O3and Er3Ga5O12[J]. Journal of Physics D: Applied Physics, 2008, 41(6): 065406. [12] ZHANG J, MU W X, ZHANG K H, et al. Broadband near-infrared Cr3+∶β-Ga2O3 fluorescent single crystal grown by the EFG method[J]. CrystEngComm, 2020, 22(44): 7654-7659. [13] CHEN Z W, NISHIHAGI K, WANG X, et al. The impact of dopant contents on structures, morphologies and optical properties of Eu doped Ga2O3 films on GaAs substrate[J]. Journal of Luminescence, 2018, 194: 374-378. [14] SOSMAN L P, ABRITTA T, NAKAMURA O, et al. Luminescence and photoacoustic measurements of β-Ga2O3∶Cr3+[J]. Journal of Materials Science Letters, 1995, 14(1): 19-20. [15] TAKAKURA K, FUNASAKI S, TSUNODA I, et al. Investigation of the Si doping effect in β-Ga2O3 films by co-sputtering of gallium oxide and Si[J]. Physica B: Condensed Matter, 2012, 407(15): 2900-2902. [16] ZHANG H, DENG J X, PAN Z W, et al. Structural and optical properties of Nb-doped β-Ga2O3 thin films deposited by RF magnetron sputtering[J]. Vacuum, 2017, 146: 93-96. [17] LI M, MI W, ZHOU L W, et al. Effect of oxygen flow ratio on crystallization and structural characteristics of gallium oxide thin films[J]. Ceramics International, 2022, 48(3): 3751-3756. [18] RAMANA C V, RUBIO E J, BARRAZA C D, et al. Chemical bonding, optical constants, and electrical resistivity of sputter-deposited gallium oxide thin films[J]. Journal of Applied Physics, 2014, 115(4): 043508. [19] TOKIDA Y, ADACHI S. Photoluminescence spectroscopy and energy-level analysis of metal-organic-deposited Ga2O3∶Cr3+ films[J]. Journal of Applied Physics, 2012, 112(6): 063522. [20] FUJIHARA S, SHIBATA Y. Luminescence of Cr3+ ions associated with surpassing the green-emissive defect centers in β-Ga2O3[J]. Journal of Luminescence, 2006, 121(2): 470-474. [21] LÓPEZ I, ALONSO-ORTS M, NOGALES E, et al. Structural and luminescence properties of Ga2O3∶Zn micro- and nanostructures[J]. Physica Status Solidi (a), 2018, 215(19): 1800217. [22] KUMAR S, KUMAR V, SINGH T, et al. The effect of deposition time on the structural and optical properties of β-Ga2O3 nanowires grown using CVD technique[J]. Journal of Nanoparticle Research, 2013, 16(1): 1-9. [23] CAO Q, HE L N, FENG X J, et al. Effect of annealing on the structural and optical properties of β-Ga2O3 films prepared on gadolinium gallium garnet (110) by MOCVD[J]. Ceramics International, 2018, 44(1): 830-835. [24] BLANCO M A, SAHARIAH M B, JIANG H T, et al. Energetics and migration of point defects in Ga2O3[J]. Physical Review B, 2005, 72(18): 184103. [25] KAISER W, SUGANO S, WOOD D L. Splitting of the emission lines of ruby by an external electric field[J]. Physical Review Letters, 1961, 6(11): 605-607. [26] FANG M H, DE GUZMAN G N A, BAO Z, et al. Ultra-high-efficiency near-infrared Ga2O3∶Cr3+ phosphor and controlling of phytochrome[J]. Journal of Materials Chemistry C, 2020, 8(32): 11013-11017. [27] DEREŃ P J, WATRAS A, GAGOR A, et al. Weak crystal field in yttrium gallium garnet (YGG) submicrocrystals doped with Cr3+[J]. Crystal Growth & Design, 2012, 12(10): 4752-4757. [28] MI W, LI Z, LUAN C N, et al. Transparent conducting tin-doped Ga2O3 films deposited on MgAl2O4 (1 0 0) substrates by MOCVD[J]. Ceramics International, 2015, 41(2): 2572-2575. [29] SHI F, QIAO H Y. Influence of hydrothermal reaction time on crystal qualities and photoluminescence properties of β-Ga2O3 nanorods[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(22): 20223-20231. [30] ZHANG C, YANG W, LI J, et al. Catalyst-assisted heteroepitaxial strategy for highly ordered β-Ga2O3 nanoarrays and their optical property investigation[J]. Nanotechnology, 2021, 32(50): 505601. [31] YANG Y, ZHANG X Y, WANG C, et al. Compact Ga2 O3 thin films deposited by plasma enhanced atomic layer deposition at low temperature[J]. Nanomaterials (Basel, Switzerland), 2022, 12(9): 1510. [32] GUO D Y, QIN X Y, LV M, et al. Decrease of oxygen vacancy by Zn-doped for improving solar-blind photoelectric performance in β-Ga2O3 thin films[J]. Electronic Materials Letters, 2017, 13(6): 483-488. [33] MI W, MA J, LI Z, et al. Characterization of Sn-doped β-Ga2O3 films deposited on MgO (100) substrate by MOCVD[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(10): 7889-7894. [34] WEN N, PENG S, YANG X J, et al. A cycle-etching approach toward the fabrication of superamphiphobic stainless steel surfaces with excellent anticorrosion properties[J]. Advanced Engineering Materials, 2017, 19(6): 1600879. [35] XU M M, GE W Y, ZHANG X M, et al. Novel one-dimensional Ga2O3∶Cr3+ nanofibers with broadband emission for near infrared LED sources[J]. Journal of Luminescence, 2022, 246: 118831. [36] SHI J X, ZHAO W Y, LIU C, et al. Enhanced performance for treatment of Cr (Ⅵ)-containing wastewater by microbial fuel cells with natural pyrrhotite-coated cathode[J]. Water, 2017, 9(12): 979. |