[1] JIN J K, WU K, LIU X Y, et al. Building a pyrazole-benzothiadiazole-pyrazole photosensitizer into metal-organic frameworks for photocatalytic aerobic oxidation[J]. Journal of the American Chemical Society, 2021, 143(50): 21340-21349. [2] TRICKETT C A, HELAL A, AL-MAYTHALONY B A, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion[J]. Nature Reviews Materials, 2017, 2: 17045. [3] TIAN D, LIU X J, FENG R, et al. Microporous luminescent metal-organic framework for a sensitive and selective fluorescence sensing of toxic mycotoxin in moldy sugarcane[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5618-5625. [4] LAN G X, NI K Y, VERONEAU S S, et al. Titanium-based nanoscale metal-organic framework for type Ⅰ photodynamic therapy[J]. Journal of the American Chemical Society, 2019, 141(10): 4204-4208. [5] LI J T, BHATT P M, LI J Y, et al. Recent progress on microfine design of metal-organic frameworks: structure regulation and gas sorption and separation[J]. Advanced Materials, 2020, 32(44): 2002563. [6] QIU L Y, YU C F, WANG X L, et al. Tuning the solid-state white light emission of postsynthetic lanthanide-encapsulated double-layer MOFs for three-color luminescent thermometry applications[J]. Inorganic Chemistry, 2019, 58(7): 4524-4533. [7] WU Y P, TIAN J W, LIU S, et al. Bi-microporous metal-organic frameworks with cubane[M4(OH)4](M=Ni, Co) clusters and pore-space partition for electrocatalytic methanol oxidation reaction[J]. Angewandte Chemie International Edition, 2019, 58(35): 12185-12189. [8] SUN Y J, ZHOU H C. Recent progress in the synthesis of metal-organic frameworks[J]. Science and Technology of Advanced Materials, 2015, 16(5): 054202. [9] YIN Z, WAN S, YANG J, et al. Recent advances in post-synthetic modification of metal-organic frameworks: new types and tandem reactions[J]. Coordination Chemistry Reviews, 2019, 378: 500-512. [10] ZHANG J P, ZHANG Y B, LIN J B, et al. Metal azolate frameworks: from crystal engineering to functional materials[J]. Chemical Reviews, 2012, 112(2): 1001-1033. [11] YU Y Y, ZHANG L J, ZHOU Y S, et al. Two series of reactant's ratio-dependent lanthanide organic frameworks derived from nicotinic acid N-oxide and oxalate: synthesis, crystal structures and luminescence properties[J]. Dalton Transactions, 2015, 44(10): 4601-4612. [12] ABOUTORABI L, MORSALI A, TAHMASEBI E, et al. Metal-organic framework based on isonicotinate N-oxide for fast and highly efficient aqueous phase Cr(Ⅵ) adsorption[J]. Inorganic Chemistry, 2016, 55(11): 5507-5513. [13] ZHU Y, ZHANG L, ZHANG J. Assembly of high-nuclearity Sn26, Sn34-oxo clusters: solvent strategies and inorganic Sn incorporation[J]. Chemical Science, 2019, 10(39): 9125-9129. [14] KANG Y F, WANG Y L, XU L, et al. Ligand-regulated assemblies of three 1D to 3D Cu(Ⅱ) coordination polymers: structural diversities and magnetic properties[J]. Journal of Solid State Chemistry, 2020, 291: 121620. [15] KANG Y F, LIU J Q, LIU B, et al. Series of Cd(Ⅱ) and Pb(Ⅱ) coordination polymers based on a multilinker (R, S-)2, 2′-bipyridine-3, 3′-dicarboxylate-1, 1′-dioxide[J]. Crystal Growth & Design, 2014, 14(11): 5466-5476. [16] BAZARGAN M, MIRZAEI M, AGHAMOHAMADI M, et al. Supramolecular assembly of a 2D coordination polymer bearing pyridine-N-oxide-2, 5-dicarboxylic acid and copper ion: X-ray crystallography and DFT calculations[J]. Journal of Molecular Structure, 2020, 1202: 127243. [17] ZANG Y, LI L K, ZANG S Q. Recent development on the alkaline earth MOFs (AEMOFs)[J]. Coordination Chemistry Reviews, 2021, 440: 213955. [18] 左 锣,冯建华,郭 莉,等. 3,4-吡啶二酸钡配合物的合成、结构、荧光和热稳定性研究(英文)[J].无机化学学报,2013,29(9): 1979-1984. ZUO L, FENG J H, GUO L, et al. Synthesis, structure, luminescest and thermal stable properties of 3, 4-pyridinedicarboxylic acid barium complex[J]. Chinese Journal of Inorganic Chemistry, 2013, 29(9): 1979-1984. [19] 赵艳芳.含八面体笼结构及具有新颖配位方式的2,3-吡嗪二甲酸钡、钙配合物的晶体结构[J].内蒙古大学学报(自然科学版),2020,51(1):85-91. ZHAO Y F. Crystal structure of Barium and calcium 2, 3-pyrazinedicarboxylate complexes containing an octahedral cage structure and a novel coordination mode[J]. Journal of Inner Mongolia University (Natural Science Edition), 2020, 51(1): 85-91(in Chinese). [20] 黄小冬,程炯佳,陶程龙,等. 基于1,4,5,8-萘四羧酸原位合成的钡配合物的结构、对芳香胺的检测及其作为纳米BaCO3的前驱体(英文)[J].无机化学学报,2022,38(3):559-568. HUANG X D, CHENG J J, TAO C L, et al. Barium complex in situ synthesized from 1, 4, 5, 8-naphthalene tetracarboxylic acid: structure, detection of aromatic amines, and use as a precursor of nano BaCO3[J]. Chinese Journal of Inorganic Chemistry, 2022, 38(3): 559-568. [21] 李世杰,宋文东,苗东亮,等.两个基于2-丙基-4,5-咪唑二甲酸的锶和钡配合物的合成,结构及性质研究(英文)[J].无机化学学报,2011,27(10):2088-2094. LI S J, SONG W D, MIAO D L, et al. Synthesis, structural and properties of two strontium and barium complexes based on 2-propyl-1H-imidazole-4, 5-dicarboxylic acid[J]. Chinese Journal of Inorganic Chemistry, 2011, 27(10): 2088-2094. [22] LIU Y, MA L N, SHI W J, et al. Four alkaline earth metal (Mg, Ca, Sr, Ba)-based MOFs as multiresponsive fluorescent sensors for Fe3+, Pb2+ and Cu2+ ions in aqueous solution[J]. Journal of Solid State Chemistry, 2019, 277: 636-647. [23] DONG X Y, HU X P, YAO H C, et al. Alkaline earth metal (Mg, Sr, Ba)-organic frameworks based on 2, 2′, 6, 6′-tetracarboxybiphenyl for proton conduction[J]. Inorganic Chemistry, 2014, 53(22): 12050-12057. [24] CHEN X Y, PLONKA A M, BANERJEE D, et al. Synthesis, structures and photoluminescence properties of a series of alkaline earth metal-based coordination networks synthesized using thiophene-based linkers[J]. Crystal Growth & Design, 2013, 13(1): 326-332. [25] VISHNOI P, KALEESWARAN D, KALITA A C, et al. Dependence of the SBU length on the size of metal ions in alkaline earth MOFs derived from a flexible C3-symmetric tricarboxylic acid[J]. CrystEngComm, 2016, 18(47): 9130-9138. [26] PANKAJAKSHAN A, MANDAL S. Water stable boronic acid grafted barium metal-organic framework for the selective adsorption of cis-diols[J]. Inorganic Chemistry, 2020, 59(9): 5958-5965. [27] ASGHARNEJAD L, ABBASI A, NAJAFI M, et al. Synthesis and structure of three new alkaline earth metal-organic frameworks with high thermal stability as catalysts for Knoevenagel condensation[J]. Crystal Growth & Design, 2019, 19(5): 2679-2686. [28] YANG J, ZHANG S L, FENG Z, et al. Ba-MOFs with tetrazole-based acetic acids: unusual configuration, novel topology and high proton conductivity[J]. Dalton Transactions, 2021, 50(34): 11975-11985. [29] LIU M, FENG J S, BAO S S, et al. Formation mechanism and reversible expansion and shrinkage of magnesium-based homochiral metal-organic nanotubes[J]. Chemistry-A European Journal, 2017, 23(5): 1086-1092. [30] LIU F L, XU Y W, ZHAO L M, et al. Porous barium-organic frameworks with highly efficient catalytic capacity and fluorescence sensing ability[J]. Journal of Materials Chemistry A, 2015, 3(43): 21545-21552. [31] SHELDRICK G M, SHELXTL, Version 2014/7; Bruker AXS, Inc: Madison, WI, 2014. [32] DIAMANTIS S A, MARGARITI A, POURNARA A D, et al. Luminescent metal-organic frameworks as chemical sensors: common pitfalls and proposed best practices[J]. Inorganic Chemistry Frontiers, 2018, 5(7): 1493-1511. [33] KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2): 1105-1125. [34] 巫云龙.基于刚性线型、V-型氮杂环羧酸配体构筑的功能配合物及性能的研究[D].西安:西北大学,2018. WU Y L. The properities of the functional coodination polymers based on the rigid linear and V-shaped nitrogen heterocyclic carboxylic acid ligand[D]. Xi′an: Northwest University, 2018(in Chinese). [35] WANG R D, ZHANG W Q, ZHOU S H, et al. A novel dual-functional coordination polymer for detection and ultra-effectively removal of Fe(Ⅲ) in water[J]. Journal of Molecular Liquids, 2022, 355: 118942. |