[1] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051. [2] EPERON G E, STRANKS S D, MENELAOU C, et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells[J]. Energy & Environmental Science, 2014, 7(3): 982. [3] KIM M, JEONG J, LU H Z, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells[J]. Science, 2022, 375(6578): 302-306. [4] CORREA-BAENA J P, SALIBA M, BUONASSISI T, et al. Promises and challenges of perovskite solar cells[J]. Science, 2017, 358(6364): 739-744. [5] FU Q X, TANG X L, HUANG B, et al. Recent progress on the long-term stability of perovskite solar cells[J]. Advanced Science, 2018, 5(5): 1700387. [6] WANG P Y, ZHANG X W, ZHOU Y Q, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells[J]. Nature Communications, 2018, 9: 2225. [7] WANG Y, DAR M I, ONO L K, et al. Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18[J]. Science, 2019, 365(6453): 591-595. [8] LIU C, YANG Y, SYZGANTSEVA O A, et al. A-CsPbI3 bilayers via one-step deposition for efficient and stable all-inorganic perovskite solar cells[J]. Advanced Materials, 2020, 32(32): 2002632. [9] WANG M H, WANG W, MA B, et al. Lead-free perovskite materials for solar cells[J]. Nano-Micro Letters, 2021, 13(1): 62. [10] KE W J, KANATZIDIS M G. Prospects for low-toxicity lead-free perovskite solar cells[J]. Nature Communications, 2019, 10: 965. [11] WANG X T, ZHANG T Y, LOU Y B, et al. All-inorganic lead-free perovskites for optoelectronic applications[J]. Materials Chemistry Frontiers, 2019, 3(3): 365-375. [12] KUNG P K, LI M H, LIN P Y, et al. Lead-free double perovskites for perovskite solar cells[J]. Solar RRL, 2020, 4(2): 1900306. [13] KRISHNAMOORTHY T, DING H, YAN C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. Journal of Materials Chemistry A, 2015, 3(47): 23829-23832. [14] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038. [15] CHUNG I, SONG J H, IM J, et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. high hole mobility and phase-transitions[J]. Journal of the American Chemical Society, 2012, 134(20): 8579-8587. [16] CHEN Z, WANG J J, REN Y H, et al. Schottky solar cells based on CsSnI3 thin-films[J]. Applied Physics Letters, 2012, 101(9): 093901. [17] KUMAR M H, DHARANI S, LEONG W L, et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation[J]. Advanced Materials, 2014, 26(41): 7122-7127. [18] CAO J P, YAN F. Recent progress in tin-based perovskite solar cells[J]. Energy & Environmental Science, 2021, 14(3): 1286-1325. [19] YE T, WANG X Z, WANG K, et al. Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%[J]. ACS Energy Letters, 2021: 1480-1489. [20] LIANG J, ZHAO P Y, WANG C X, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society, 2017, 139(40): 14009-14012. [21] HU M Y, CHEN M, GUO P J, et al. Sub-1.4eV bandgap inorganic perovskite solar cells with long-term stability[J]. Nature Communications, 2020, 11: 151. |