[1] ZENG M Q, XIAO Y, LIU J X, et al. Exploring two-dimensional materials toward the next-generation circuits: from monomer design to assembly control[J]. Chemical Reviews, 2018, 118(13): 6236-6296. [2] FIORI G, BONACCORSO F, IANNACCONE G, et al. Electronics based on two-dimensional materials[J]. Nature Nanotechnology, 2014, 9(10): 768-779. [3] XU M S, LIANG T, SHI M M, et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113(5): 3766-3798. [4] LI G, ZHANG Y Y, GUO H, et al. Epitaxial growth and physical properties of 2D materials beyond graphene: from monatomic materials to binary compounds[J]. Chemical Society Reviews, 2018, 47(16): 6073-6100. [5] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033. [6] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273. [7] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. [8] TAN C L, CAO X H, WU X J, et al. Recent advances in ultrathin two-dimensional nanomaterials[J]. Chemical Reviews, 2017, 117(9): 6225-6331. [9] SCHWIERZ F. Graphene transistors[J]. Nature Nanotechnology, 2010, 5(7): 487-496. [10] DAS SARMA S, ADAM S, HWANG E H, et al. Electronic transport in two-dimensional graphene[J]. Reviews of Modern Physics, 2011, 83(2): 407-470. [11] WANG K, ELAHI M M, WANG L, et al. Graphene transistor based on tunable Dirac fermion optics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(14): 6575-6579. [12] ZHANG Y J, OKA T, SUZUKI R, et al. Electrically switchable chiral light-emitting transistor[J]. Science, 2014, 344(6185): 725-728. [13] DESAI S B, MADHVAPATHY S R, SACHID A B, et al. MoS2 transistors with 1-nanometer gate lengths[J]. Science, 2016, 354(6308): 99-102. [14] LIU T, LIU S, TU K H, et al. Crested two-dimensional transistors[J]. Nature Nanotechnology, 2019, 14(3): 223-226. [15] SCHAIBLEY J R, YU H Y, CLARK G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016, 1: 16055. [16] LI L K, YU Y J, YE G J, et al. Black phosphorus field-effect transistors[J]. Nature Nanotechnology, 2014, 9(5): 372-377. [17] ZHOU Q H, CHEN Q, TONG Y L, et al. Light-induced ambient degradation of few-layer black phosphorus: mechanism and protection[J]. Angewandte Chemie International Edition, 2016, 55(38): 11437-11441. [18] HUANG M Q, WANG M L, CHEN C, et al. Broadband black-phosphorus photodetectors with high responsivity[J]. Advanced Materials, 2016, 28(18): 3481-3485. [19] MOLLE A, GOLDBERGER J, HOUSSA M, et al. Buckled two-dimensional Xene sheets[J]. Nature Materials, 2017, 16(2): 163-169. [20] DOU Y H, ZHANG L, XU X, et al. Atomically thin non-layered nanomaterials for energy storage and conversion[J]. Chemical Society Reviews, 2017, 46(23): 7338-7373. [21] YIN K B, ZHANG Y Y, ZHOU Y L, et al. Unsupported single-atom-thick copper oxide monolayers[J]. 2D Materials, 2016, 4(1): 011001. [22] KANO E, KVASHNIN D G, SAKAI S, et al. One-atom-thick 2D copper oxide clusters on graphene[J]. Nanoscale, 2017, 9(11): 3980-3985. [23] LIN X, LU J C, SHAO Y, et al. Intrinsically patterned two-dimensional materials for selective adsorption of molecules and nanoclusters[J]. Nature Materials, 2017, 16(7): 717-721. [24] GAO L, SUN J T, LU J C, et al. Epitaxial growth of honeycomb monolayer CuSe with Dirac nodal line fermions[J]. Advanced Materials, 2018, 30(16): 1707055. [25] DONG L, WANG A W, LI E, et al. Formation of two-dimensional AgTe monolayer atomic crystal on Ag(111) substrate[J]. Chinese Physics Letters, 2019, 36(2): 028102. [26] LIU B, LIU J, MIAO G Y, et al. Flat AgTe honeycomb monolayer on Ag(111)[J]. The Journal of Physical Chemistry Letters, 2019, 10(8): 1866-1871. [27] QIAN K, GAO L, CHEN X Y, et al. Air-stable monolayer Cu2Se exhibits a purely thermal structural phase transition[J]. Advanced Materials, 2020, 32(19): 1908314. [28] QIAN K, GAO L, LI H, et al. Epitaxial growth and air-stability of monolayer Cu2Te[J]. Chinese Physics B, 2020, 29(1): 018104. [29] MA Y D, KOU L Z, DAI Y, et al. Two-dimensional topological insulators in group-11 chalcogenide compounds: M2Te(M=Cu, Ag)[J]. Physical Review B, 2016, 93(23): 235451. [30] XUE Y, ZHAO B, ZHU Y, et al. Novel Chern insulators with half-metallic edge states[J]. NPG Asia Materials, 2018, 10(2): e467. [31] GUO Y, WU Q S, LI Y H, et al. Copper(i) sulfide: a two-dimensional semiconductor with superior oxidation resistance and high carrier mobility[J]. Nanoscale Horizons, 2019, 4(1): 223-230. [32] PENG R, MA Y D, HE Z L, et al. Single-layer Ag2S: a two-dimensional bidirectional auxetic semiconductor[J]. Nano Letters, 2019, 19(2): 1227-1233. [33] WU Q S, XU W W, LIN D D, et al. Two-dimensional gold sulfide monolayers with direct band gap and ultrahigh electron mobility[J]. The Journal of Physical Chemistry Letters, 2019, 10(13): 3773-3778. [34] AN Y P, HOU Y S, WANG H, et al. Multifunctional 2D CuSe monolayer nanodevice[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2019, 31(35): 355301. [35] ÜNZELMANN M, BENTMANN H, ECK P, et al. Orbital-driven rashba effect in a binary honeycomb monolayer AgTe[J]. Physical Review Letters, 2020, 124(17): 176401. [36] AST C R, HENK J, ERNST A, et al. Giant spin splitting through surface alloying[J]. Physical Review Letters, 2007, 98(18): 186807. [37] ROSENZWEIG P, OTTO S, FAUSTER T. Complex manifold of Rashba and image-potential states on Bi/Ag(111)[J]. Physical Review B, 2018, 98(8): 085430. [38] BENTMANN H, FORSTER F, BIHLMAYER G, et al. Origin and manipulation of the Rashba splitting in surface alloys[J]. EPL (Europhysics Letters), 2009, 87(3): 37003. [39] SUNKO V, ROSNER H, KUSHWAHA P, et al. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking[J]. Nature, 2017, 549(7673): 492-496. [40] SOARES JR A L, DOS SANTOS E C, MORALES-GARCÍA Á, et al. The stability and structural, electronic and topological properties of covellite (001) surfaces[J]. ChemistrySelect, 2016, 1(11): 2730-2741. [41] SOARES A L, DOS SANTOS E C, MORALES-GARCÍA A, et al. Two-dimensional crystal CuS-electronic and structural properties[J]. 2D Materials, 2016, 4(1): 015041. [42] LIU F, MING P B, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76(6): 064120. [43] LIU K, WU J Q. Mechanical properties of two-dimensional materials and heterostructures[J]. Journal of Materials Research, 2016, 31(7): 832-844. [44] BERTOLAZZI S, BRIVIO J, KIS A. Stretching and breaking of ultrathin MoS2[J]. ACS Nano, 2011, 5(12): 9703-9709. [45] CASTELLANOS-GOMEZ A, POOT M, STEELE G A, et al. Elastic properties of freely suspended MoS2 nanosheets[J]. Advanced Materials, 2012, 24(6): 772-775. [46] LI T S. Ideal strength and phonon instability in single-layer MoS2[J]. Physical Review B, 2012, 85(23): 235407. [47] QIAO J S, KONG X H, HU Z X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus[J]. Nature Communications, 2014, 5: 4475. [48] GUO Y, ZHOU S, ZHANG J F, et al. Atomic structures and electronic properties of phosphorene grain boundaries[J]. 2D Materials, 2016, 3(2): 025008. [49] RIEDL C, COLETTI C, IWASAKI T, et al. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation[J]. Physical Review Letters, 2009, 103(24): 246804. [50] RIHA S C, JOHNSON D C, PRIETO A L. Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction[J]. Journal of the American Chemical Society, 2011, 133(5): 1383-1390. [51] JIANG J W, PARK H S. Negative poisson's ratio in single-layer black phosphorus[J]. Nature Communications, 2014, 5: 4727. [52] QIN G Z, YAN Q B, QIN Z Z, et al. Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance[J]. Scientific Reports, 2014, 4: 6946. [53] ZHANG L C, QIN G Z, FANG W Z, et al. Tinselenidene: a two-dimensional auxetic material with ultralow lattice thermal conductivity and ultrahigh hole mobility[J]. Scientific Reports, 2016, 6: 19830. [54] GAO L, ZHANG Y F, DU S X. Semiconducting M2X (M=Cu, Ag, Au; X=S, Se, Te) monolayers: a broad range of band gaps and high carrier mobilities[J]. Nano Research, 2021, 14(8): 2826-2830. [55] LI B, HUANG L, ZHAO G Y, et al. Large-size 2D β-Cu2S nanosheets with giant phase transition temperature lowering (120 K) synthesized by a novel method of super-cooling chemical-vapor-deposition[J]. Advanced Materials, 2016, 28(37): 8271-8276. [56] ROMDHANE F B, CRETU O, DEBBICHI L, et al. Quasi-2D Cu2S crystals on graphene: in situ growth and ab-initio calculations[J]. Small, 2015, 11(11): 1253-1257. [57] WU Q S, XU W W, QU B Y, et al. Au6S2monolayer sheets: metallic and semiconducting polymorphs[J]. Materials Horizons, 2017, 4(6): 1085-1091. [58] ERSAN F. Single-layer Ag6S2: first principles investigation of a new two-dimensional direct bandgap semiconductor[J]. Computational Materials Science, 2019, 163: 278-281. |