人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1541-1559.
杨金凤1, 孙军2, 秦娟2, 李清连2, 商继芳1, 张玲2, 许京军2
收稿日期:
2022-06-04
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
孙 军,博士,教授。E-mail:sunjun@nankai.edu.cn
作者简介:
杨金凤(1987—),女,河南省人,博士,讲师。E-mail:yangjinfeng@haue.edu.cn。基金资助:
YANG Jinfeng1, SUN Jun2, QIN Juan2, LI Qinglian2, SHANG Jifang1, ZHANG Ling2, XU Jingjun2
Received:
2022-06-04
Online:
2022-10-15
Published:
2022-11-02
摘要: 晶体美丽有用,构造和谐有序。光电功能晶体可实现光能和电能的相互转化,在微电子、光电子、通信、航天及现代军事技术等高科技领域占有重要地位。人类认识晶体,源于天然矿物。从矿物晶体的发现到光电功能晶体的人工生长和应用经历了漫长的发展,晶体种类、晶体质量、生长理论、生长技术以及应用等方面均取得了较大进展。本文简述了从矿物宝石到晶体学发展的历程,介绍了压电晶体、电光晶体、激光晶体、非线性光学晶体和闪烁晶体等几类光电功能晶体发展历程及晶体生长研究的进展,展望了未来光电功能晶体的发展趋势。
中图分类号:
杨金凤, 孙军, 秦娟, 李清连, 商继芳, 张玲, 许京军. 从矿物宝石到光电功能晶体——解读蒋民华先生《晶体赋》[J]. 人工晶体学报, 2022, 51(9-10): 1541-1559.
YANG Jinfeng, SUN Jun, QIN Juan, LI Qinglian, SHANG Jifang, ZHANG Ling, XU Jingjun. From Mineral Gems to Photoelectric Functional Crystals ——A Interpretation of Mr. Jiang Minhua’s Crystal Ode[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1541-1559.
[1] 杨晓杰,郭志飚.矿山工程地质学[M].徐州:中国矿业大学出版社,2015. YANG X, GUO Z. Geology of mine engineering [M]. Xuzhou: China University of Mining and Technology Press, 2015(in Chinese). [2] 任启江,胡志红,叶 俊,等.矿床学概论[M].南京:南京大学出版社,1993. REN Q, HU Z, YE J, et al. Introduction to ore deposits [M]. Nanjing: Nanjing University Press, 1993(in Chinese). [3] 范 晔. 后汉书[M].郑州:中州古籍出版社,2018. FAN Y. Book of the Later Han Dynasty[M]. Zhengzhou: Zhongzhou Ancient Books Publishing House, 2018(in Chinese). [4] 张应文. 四库全书·清秘藏[M].[出版者不详]:[出版地不详],[1792]. ZHANG Y. Si Ku Quan Shu · Qing Mi Zang[M]. [S.I.]: [s.n.], [1792] (in Chinese). [5] 中国地质学会地质学史研究会.中国地质大学地质学史研究所.地质学史论丛-4[M].北京:地质出版社,2002. The Geological History Research Association of the Geological Society of China. Institute of geological history, China University of Geosciences. Series on historical theory of geology 4[M]. Beijing: Geology Press, 2002(in Chinese). [6] 李国昌,王 萍.结晶学教程[M].3版.北京:国防工业出版社,2019. LI G C, WANG P. Course in crystallography [M]. 3th ed. Beijing: National Defence Industry Press, 2019(in Chinese). [7] 王文魁,彭志忠.晶体测量学简明教程[M].北京:地质出版社,1992. WANG W K, PENG Z Z. A brief tutorial on crystallography [M]. Beijing: Geology Press, 1992(in Chinese). [8] 赵珊茸.结晶学及矿物学[M].北京:高等教育出版社,2004. ZHAO S R. Crystallography and mineralogy[M]. Beijing: Higher Education Press, 2004(in Chinese). [9] 陈敬中.现代晶体化学 理论与方法[M].北京:高等教育出版社,2001. CHEN J Z. Modern crystal chemistry - theory and methods[M]. Beijing: Higher Education Press, 2001(in Chinese). [10] EVANS R C.结晶化学导论[M].胡玉才,译.北京:人民教育出版社,1981. EVANS R C. An introduction to crystal chemistry[M]. HU Y C, translated. Beijing: People’s Education Press, 1981(in Chinese). [11] 廖立兵.晶体化学及晶体物理学[M].北京:地质出版社,2000. LIAO L B. Crystal chemistry and crystal physics[M]. Beijing: Geology Press, 2000(in Chinese). [12] 毛卫民.晶体材料的结构[M].北京:冶金工业出版社,1998. MAO W M. The structure of crystalline materials[M]. Beijing: Metallurgical Industry Press, 1998(in Chinese). [13] 陈吉书.无机化学[M].南京:南京大学出版社,2002. CHEN J S. Inorganic chemistry[M]. Nanjing: Nanjing University Press, 2002(in Chinese). [14] 潘兆橹.结晶学及矿物学-上册[M].3版.北京:地质出版社,1993. PAN Z L. Crystallography and mineralogy-Part 1[M]. 3th ed. Beijing: Geology Press, 1993(in Chinese). [15] 孙晓锋.压电泵的结构设计与性能研究[M].长春:吉林人民出版社,2016. SUN X F. Study on structure design and performance of piezoelectric pump[M]. Changchun: Jilin People's Press, 2016(in Chinese). [16] 高智勇,隋解和,孟祥龙.材料物理性能及其分析测试方法[M].2版.哈尔滨:哈尔滨工业大学出版社,2020. GAO Z Y, SUI J H, MENG X L. Physical properties of materials and their analytical methods[M]. 2th ed. Harbin: Harbin Institute of Technology Press, 2002(in Chinese). [17] 李翰如.电介质物理导论[M].成都:成都科技大学出版社,1990. LI H R. Introduction to dielectric physics [M]. Chengdu: Chengdu University of Science and Technology Press, 1990(in Chinese). [18] HENRICI A T, JOHNSON D E. Studies of freshwater bacteria: ii. stalked bacteria, a new order of schizomycetes[J]. Journal of Bacteriology, 1935, 30(1): 61-93. [19] 张克从.近代晶体学基础-上册[M].北京:科学出版社,1987. ZHANG K C. Fundamentals of modern crystallography-Volume 1[M]. Beijing: Science Press, 1987(in Chinese). [20] 江国健.新材料创新与产业化[M].徐州:中国矿业大学出版社,2018. JIANG G J. New material innovation and industrialization[M]. Xuzhou: China University of Mining and Technology Press, 2018(in Chinese). [21] BALLMAN A A. Growth of piezoelectric and ferroelectric materials by the CzochraIski technique[J]. Journal of the American Ceramic Society, 1965, 48(2): 112-113. [22] YAMADA T, IWASAKI H, NIIZEKI N. Piezoelectric and elastic properties of LiTaO3: temperature characteristics[J]. Japanese Journal of Applied Physics, 1969, 8(9): 1127-1132. [23] WHATMORE R W, SHORROCKS N M, O’HARA C, et al. Lithium tetraborate: a new temperature-compensated SAW substrate material[J]. Electronics Letters, 1981, 17(1): 11. [24] 罗豪甦,焦 杰,陈 瑞,等.弛豫铁电单晶的多功能特性及其器件应用[J].人工晶体学报,2021,50(5):783-802. LUO H S, JIAO J, CHEN R, et al. Multifunctional properties and device applications of the relaxor ferroelectric single crystals[J]. Journal of Synthetic Crystals, 2021, 50(5): 783-802(in Chinese). [25] LI F, CABRA M J, XU B.Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science Foundation in China, 2019, 27(2): 17. [26] PARK S E, SHROUT T R. Relaxor based ferroelectric single crystals for electro-mechanical actuators[J]. Materials Research Innovations, 1997, 1(1): 20-25. [27] PARK S E, SHROUT T R. Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers[J]. IEEE Ultrasonics Symposium Proceedings, 1996, 2: 935-942. [28] YEO H G, CHOI J, JIN C Z, et al. The design and optimization of a compressive-type vector sensor utilizing a PMN-28PT piezoelectric single-crystal[J]. Sensors, 2019, 19(23): 5155. [29] LIN D B, LI Z R, LI F, et al. Characterization and piezoelectric thermal stability of PIN-PMN-PT ternary ceramics near the morphotropic phase boundary[J]. Journal of Alloys and Compounds, 2010, 489(1): 115-118. [30] 吴冠洁,邓安猛,蔡 帅,等.高相变温度弛豫铁电单晶PMN-PT-PZ的生长与性能表征[J].人工晶体学报,2016,45(12):2741-2746. WU G J, DENG A M, CAI S, et al. Growth and performance characterization of relaxor-based ferroelectric crystal PMN-PT-PZ with high phase transition temperature[J]. Journal of Synthetic Crystals, 2016, 45(12): 2741-2746(in Chinese). [31] BELAN R A, TAILOR H N, LONG X F, et al. Growth and characterization of piezo-/ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3-Bi(Zn1/2Ti1/2)O3 ternary single crystals[J]. Journal of Crystal Growth, 2011, 318(1): 839-845. [32] 刘曼曼,汪跃群,熊俊杰,等.高居里温度铁电单晶PIN-PT的机电性能[J].人工晶体学报,2022,51(4):579-586. LIU M M, WANG Y Q, XIONG J J, et al. Electromechanical properties of ferroelectric single crystal PIN-PT with high Curie temperature[J]. Journal of Synthetic Crystals, 2022, 51(4): 579-586(in Chinese). [33] SHIMAMURA K, TAKEDA H, KOHNO T, et al. Growth and characterization of lanthanum gallium silicate La3Ga5SiO14 single crystals for piezoelectric applications[J]. Journal of Crystal Growth, 1996, 163(4): 388-392. [34] 武安华,徐家跃,周 娟,等.硅酸镓镧结构的新型压电晶体的研究进展[J].硅酸盐学报,2003,31(5):480-484. WU A H, XU J Y, ZHOU J, et al. Recent developments of new piezoelectric single crystals with La3Ga5SiO14 structure[J]. Journal of the Chinese Ceramic Society, 2003, 31(5): 480-484(in Chinese). [35] YU F P, YUAN D R, YIN X, et al. Czochralski growth and characterization of the piezoelectric single crystal La3Ga5.5Nb0.5O14[J]. Solid State Communications, 2009, 149(31/32): 1278-1281. [36] 石自彬,李和新,龙 勇,等.大尺寸Y方向钽酸镓镧压电晶体生长及性能研究[J].人工晶体学报,2020,49(6):1044-1047. SHI Z B, LI H X, LONG Y, et al. Study on growth and properties of large size Y-orientated langatate piezoelectric crystal[J]. Journal of Synthetic Crystals, 2020, 49(6): 1044-1047(in Chinese). [37] SHI X Z, YUAN D R, YIN X, et al. Crystal growth and dielectric, piezoelectric and elastic properties of Ca3NbGa3Si2O14 single crystal[J]. Journal of Crystal Growth, 2006, 293(2): 485-488. [38] ZU H F, WU H Y, WANG Y Z, et al. Properties of single crystal piezoelectric Ca3TaGa3Si2O14 and YCa4O(BO3)3 resonators at high-temperature and vacuum conditions[J]. Sensors and Actuators A: Physical, 2014, 216: 167-175. [39] 辛长宇,吉小军,施文康.新型压电晶体锗酸镓锶与硅酸镓镧声表面波传播特性的研究[J].无机材料学报,2007,22(2):273-276. XIN C Y, JI X J, SHI W K. SAW properties of SGG and LGS piezocrystals[J]. Journal of Inorganic Materials, 2007, 22(2): 273-276(in Chinese). [40] 杨 虹,黄文奇,卢贵武,等.Sr3NbGa3Si2O14和Sr3TaGa3Si2O14压电晶体的声表面波特性研究[J].人工晶体学报,2011,40(2):392-395+404. YANG H, HUANG W Q, LU G W, et al. Study on the SAW properties of SNGS and STGS piezoelectric crystals[J]. Journal of Synthetic Crystals, 2011, 40(2): 392-395+404(in Chinese). [41] ZHANG M H, HU C P, ZHOU Z, et al. Determination of polarization states in (K, Na)NbO3 lead-free piezoelectric crystal[J]. Journal of Advanced Ceramics, 2020, 9(2): 204-209. [42] CHEN F F, KONG L F, YU F P, et al. Investigation of the crystal growth, thickness and radial modes of α-BiB3O6 piezoelectric crystals[J]. CrystEngComm, 2017, 19(3): 546-551. [43] SCOTT B A, INGEBRIGTSEN K A, TSENG C C. Crystal growth and properties of pyroelectric Li2GeO3[J]. Materials Research Bulletin, 1970, 5(12): 1045-1049. [44] KUZ′MICHEVA G M, RYBAKOV V B, GAISTER A V, et al. Structure and properties of LiGaO2 crystals[J].Inorganic Materials, 2001, 37(3): 281-285. [45] 武广达,樊梦迪,杜月浩,等.压电晶体YbBa3(PO4)3的生长与性质表征[J].人工晶体学报,2021,50(4):735-740. WU G D, FAN M D, DU Y H, et al. Growth and property characterization of novel piezoelectric crystal YbBa3(PO4)3[J]. Journal of Synthetic Crystals, 2021, 50(4): 735-740(in Chinese). [46] ZHANG S J, ZHANG J G, CHENG Z X, et al. Studies on the growth and defects of GdCa4O(BO3)3 crystals[J]. Journal of Crystal Growth, 1999, 203(1/2): 168-172. [47] YU F P, HOU S, ZHANG S J, et al. Electro-elastic properties of YCa4O(BO3)3 piezoelectric crystals[J]. Physica Status Solidi (a), 2014, 211(3): 574-579. [48] JIANG C, LONG Y, YU F P, et al. Single crystal growth and temperature dependent behaviors of melilite type piezoelectric crystal Ca2Al2SiO7[J]. Journal of Crystal Growth, 2018, 496/497: 57-63. [49] ZHANG Y Y, YIN X, YU H H, et al. Growth and piezoelectric properties of melilite ABC3O7 crystals[J]. Crystal Growth & Design, 2012, 12(2): 622-628. [50] SOULEIMAN M, BHALERAO G M, GUILLET T, et al. Hydrothermal growth of large piezoelectric single crystals of GaAsO4[J]. Journal of Crystal Growth, 2014, 397: 29-38. [51] KREMPL P, SCHLEINZER G, WALLNÖFER W. Gallium phosphate, GaPO4: a new piezoelectric crystal material for high-temperature sensorics[J]. Sensors and Actuators A: Physical, 1997, 61(1/2/3): 361-363. [52] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. [53] DANIELMEYER H G, OSTERMAYER F W. Diode-pump-modulated Nd∶YAG laser[J]. Journal of Applied Physics, 1972, 43(6): 2911-2913. [54] 徐学珍,桂尤喜,王永国.优质大尺寸激光晶体研究进展[J].激光与红外,2007,37(4):295-299. XU X Z, GUI Y X, WANG Y G. Research progress of high quality and large size laser crystals[J]. Laser & Infrared, 2007, 37(4): 295-299(in Chinese). [55] 郭勇文,黄晋强,权纪亮.大尺寸Nd,Ce∶YAG激光晶体的生长及缺陷研究[J].人工晶体学报,2021,50(2):244-247+252. GUO Y W, HUANG J Q, QUAN J L. Growth and defects of large size Nd, Ce∶YAG laser crystal[J]. Journal of Synthetic Crystals, 2021, 50(2): 244-247+252(in Chinese). [56] 杭 寅,徐 民,张连翰,等.国产大尺寸钛宝石晶体助力世界最强脉冲激光放大输出[J].人工晶体学报,2019,48(5):809-811. HANG Y, XU M, ZHANG L H, et al. Domestic large sized Ti∶sapphire crystal assists the world’s strongest pulsed laser amplification output[J]. Journal of Synthetic Crystals, 2019, 48(5): 809-811(in Chinese). [57] NING K J, LIU Y C, MA J, et al. Growth and characterization of large-scale Ti∶sapphire crystal using heat exchange method for ultra-fast ultra-high-power lasers[J]. CrystEngComm, 2015, 17(14): 2801-2805. [58] MOULTON P. Ti-doped sapphire: tunable solid-state laser[J]. Optics News, 1982, 8(6): 9. [59] MOULTON P F. Spectroscopic and laser characteristics of Ti: Al2O3[J]. Journal of the Optical Society of America B, 1986, 3(1): 125. [60] 李敢生,吴喜泉,位 民,等.大尺寸优质钒酸钇(YVO4)双折射晶体生长[J].人工晶体学报,1999,28(1):27-30. LI G S, WU X Q, WEI M, et al. Growth of large size and high quality YVO4 birefringent crystals[J]. Journal of Synthetic Crystals, 1999, 28(1): 27-30(in Chinese). [61] FIELDS R A, BIRNBAUM M, FINCHER C L. Highly efficient Nd∶YVO4 diode-laser end-pumped laser[J]. Applied Physics Letters, 1987, 51(23): 1885-1886. [62] OGINO H, YOSHIKAWA A, NIKL M, et al. Growth and scintillation properties of Pr-doped Lu3Al5O12 crystals[J]. Journal of Crystal Growth, 2006, 287(2): 335-338. [63] PRACKA I, GIERSZ W, ŚWIRKOWICZ M, et al. The Czochralski growth of SrLaGa3O7 single crystals and their optical and lasing properties[J]. Materials Science and Engineering: B, 1994, 26(2/3): 201-206. [64] XU Y N, CHING W Y, BRICKEEN B K. Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12[J]. Physical Review B, 2000, 61(3): 1817-1824. [65] LUCCA A, DEBOURG G, JACQUEMET M, et al. High-power diode-pumped Yb3+∶CaF2 femtosecond laser[J]. Optics Letters, 2004, 29(23): 2767-2769. [66] SU L B, XU J, LI H J, et al. Codoping Na+ to modulate the spectroscopy and photoluminescence properties of Yb3+ in CaF2 laser crystal[J]. Optics Letters, 2005, 30(9): 1003-1005. [67] RICAUD S, GEORGES P, CAMY P, et al. Diode-pumped regenerative Yb∶SrF2 amplifier[J]. Applied Physics B, 2012, 106(4): 823-827. [68] COLUCCELLI N, GALZERANO G, TONELLI M, et al. Diode-pumped Yb3+∶KYF4 femtosecond laser[J]. Optics Letters, 2008, 33(10): 1141-1143. [69] COLUCCELLI N, GALZERANO G, BONELLI L, et al. Diode-pumped passively mode-locked Yb∶YLF laser[J]. Optics Express, 2008, 16(5): 2922. [70] YASUKEVICH A S, KISEL V E, KURILCHIK S V, et al. Continuous wave diode pumped Yb∶LLF and Yb∶NYF lasers[J]. Optics Communications, 2009, 282(22): 4404-4407. [71] FALIN M L, GERASIMOV K I, KAZAKOV B N, et al. Spectrometer for optical detection of magnetic resonance: magneto-optical study of Yb3+ in BaF2 single crystal[J]. Applied Magnetic Resonance, 1999, 17(1): 103-112. [72] 张沛雄,李善明,杨依伦,等.中红外氟化物激光晶体的生长和性能优化研究[J].人工晶体学报,2020,49(8):1369-1378. ZHANG P X, LI S M, YANG Y L, et al. Growth and performance optimization of mid-infrared fluoride laser crystal[J]. Journal of Synthetic Crystals, 2020, 49(8): 1369-1378(in Chinese). [73] HOU W T, XU Z A, ZHAO H Y, et al. Spectroscopic analysis of Er∶Y2O3 crystal at 2.7 μm mid-IR laser[J]. Optical Materials, 2020, 107: 110017. [74] HOU W T, ZHAO H Y, LI N, et al. Spectroscopic properties of Er∶Lu2O3 crystal in mid-infrared emission[J]. Optical Materials, 2019, 98: 109508. [75] NOGINOV M A, LOUTTS G B, JONES D E, et al. Crystal growth of vanadium doped YAlO3, LaGaO3, and CaYAlO4 crystals and spectroscopic studies of vanadium valence states[J]. Journal of Applied Physics, 2001, 91(2): 569-575. [76] LISIECKI R, SOLARZ P, DOMINIAK-DZIK G, et al. Effect of temperature on spectroscopic features relevant to laser performance of YVO4∶Tm3+, GdVO4∶Tm3+, and LuVO4∶Tm3+ crystals[J]. Optics Letters, 2010, 35(23): 3940-3942. [77] LI W X, HAO Q, ZHAI H, et al. Diode-pumped Yb∶GSO femtosecond laser[J]. Optics Express, 2007, 15(5): 2354-2359. [78] LIU J, WANG W W, LIU C C, et al. Efficient diode-pumped self-mode-locking Yb∶LYSO laser[J]. Laser Physics Letters, 2009: NA. [79] TIAN W L, WANG Z H, LIU J X, et al. Dissipative soliton and synchronously dual-wavelength mode-locking Yb∶YSO lasers[J]. Optics Express, 2015, 23(7): 8731-8739. [80] ZHENG L H, ZHAO G J, SU L B, et al. Comparison of optical properties between ytterbium-doped Lu2SiO5 (Yb∶LSO) and ytterbium-doped Lu2Si2O7(Yb∶LPS) laser crystals[J]. Journal of Alloys and Compounds, 2009, 471(1/2): 157-161. [81] SERRES J M, MATEOS X, LOIKO P, et al. Indium-modified Yb∶KLu(WO4)2 crystal: growth, spectroscopy and laser operation[J]. Journal of Luminescence, 2017, 183: 391-400. [82] HOLTOM G R. Mode-locked Yb∶KGW laser longitudinally pumped by polarization-coupled diode bars[J]. Optics Letters, 2006, 31(18): 2719-2721. [83] LIU H, NEES J, MOUROU G. Diode-pumped Kerr-lens mode-locked Yb∶KY(WO4)2 laser[J]. Optics Letters, 2001, 26(21): 1723-1725. [84] ZHANG Y, WANG G F. Optical properties of Yb3+-doped Sr3Y2(BO3)4 crystal[J]. Journal of Materials Research, 2012, 27(16): 2106-2110. [85] LOU F, SUN S J, HE J L, et al. Direct diode-pumped 58 fs Yb∶Sr3Y2(BO3)4 laser[J]. Optical Materials, 2016, 55: 1-4. [86] ZHANG Y, LIN Z B, ZHANG L Z, et al. Growth and optical properties of Yb3+-doped Sr3Gd2(BO3)4 crystal[J]. Optical Materials, 2007, 29(5): 543-546. [87] ZHANG Y Y, LI J R, HU Y Y, et al. Temperature tunable lasers with disordered Nd∶ABC3O7 crystals[J]. Optics & Laser Technology, 2020, 125: 106018. [88] 韩永飞,李景照,陈振强,等.钼酸盐激光晶体的研究进展[J].人工晶体学报,2009,38(1):190-196+202. HAN Y F, LI J Z, CHEN Z Q, et al. Review of research on molybdate laser crystal[J]. Journal of Synthetic Crystals, 2009, 38(1): 190-196+202(in Chinese). [89] 张沛雄,洪佳琪,李善明,等.3 μm波段稀土离子激活的氟化物激光晶体研究进展[J].应用技术学报,2017,17(2):93-101. ZHANG P X, HONG J Q, LI S M, et al. Research progress of fluoride laser crystals activated by 3 μm rare earth ions[J]. Journal of Technology, 2017, 17(2): 93-101(in Chinese). [90] 薛艳艳,徐晓东,苏良碧,等.中红外波段激光晶体的研究进展[J].人工晶体学报,2020,49(8):1347-1360. XUE Y Y, XU X D, SU L B, et al. Research progress of mid-infrared laser crystals[J]. Journal of Synthetic Crystals, 2020, 49(8): 1347-1360(in Chinese). [91] FRANKEN P A, HILL A E, PETERS C W, et al. Generation of optical harmonics[J]. Physical Review Letters, 1961, 7(4): 118-119. [92] HULME K F, JONES O, DAVIES P H, et al. Synthetic proustite (Ag3AsS3): a new crystal for optical mixing[J]. Applied Physics Letters, 1967, 10(4): 133-135. [93] BARDSLEY W, DAVLES P H, HOBDEN M V, et al. Synthetic proustite (Ag3AsS3): a summary of its properties and uses[J]. Opto-electronics, 1969, 1(1): 29-31. [94] CHEN C T, WU B C, JIANG A D, et al. A new-type ultraviolet SHG crystal—β-BaB2O4[J]. Science in China, Ser B, 1985, 28(3): 235-243. [95] WU Y C, CHEN C T. Development of new nonlinear optical crystal LiB3O5[J]. The Review of Laser Engineering, 1991, 19(10): 941-949. [96] YE N, TANG D. Hydrothermal growth of KBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2006, 293(2): 233-235. [97] WANG X Y, YAN X, LUO S Y, et al. Flux growth of large KBBF crystals by localized spontaneous nucleation[J]. Journal of Crystal Growth, 2011, 318(1): 610-612. [98] 陈 伟.“中国晶体珍宝”: BBO晶体[J].人工晶体学报,2022,51(4):752. CHEN W. “Chinese crystal treasure”-BBO crystal[J]. Journal of Synthetic Crystals, 2022, 51(4): 752(in Chinese). [99] RYU G, YOON C S, HAN T P J, et al. Growth and characterisation of CsLiB6O10 (CLBO) crystals[J]. Journal of Crystal Growth, 1998, 191(3): 492-500. [100] WU Y C, SASAKI T, NAKAI S D, et al. CsB3O5: a new nonlinear optical crystal[J]. Applied Physics Letters, 1993, 62(21): 2614-2615. [101] KRYUKOV P G, MATVEETS Y A, NIKOGOSYAN D N, et al. Generation of frequency-tunable single ultrashort light pulses in an LiIO3 crystal[J]. Soviet Journal of Quantum Electronics, 1977, 7(1): 127-128. [102] CYRANOSKI D. Materials science: China’s crystal cache[J].Nature, 2009, 457(7232): 953-955. [103] ANDRIYEVSKY B, PILZ T, YEON J, et al. DFT-based ab initio study of dielectric and optical properties of bulk Li2B3O4F3 and Li2B6O9F2[J]. Journal of Physics and Chemistry of Solids, 2013, 74(4): 616-623. [104] PENG G, YE N, LIN Z S, et al. NH4Be2BO3F2 and γ-Be2BO3F: overcoming the layering habit in KBe2BO3F2 for the next-generation deep-ultraviolet nonlinear optical materials[J]. Angewandte Chemie International Edition, 2018, 57(29): 8968-8972. [105] GUO S, LIU L J, XIA M J, et al. Be2BO3F: a phase of beryllium fluoride borate derived from KBe2BO3F2 with short UV absorption edge[J]. Inorganic Chemistry, 2016, 55(13): 6586-6591. [106] SHI G Q, WANG Y, ZHANG F F, et al. Finding the next deep-ultraviolet nonlinear optical material: NH4B4O6F[J]. Journal of the American Chemical Society, 2017, 139(31): 10645-10648. [107] LIU L J, ZHOU H T, HE X L, et al. Hydrothermal growth and optical properties of RbBe2BO3F2 crystals[J]. Journal of Crystal Growth, 2012, 348(1): 60-64. [108] 贾 宁,王善朋,陶绪堂.中远红外非线性光学晶体研究进展[J].物理学报,2018,67(24):244203. JIA N, WANG S P, TAO X T. Research progress of mid-and far-infrared nonlinear optical crystals[J]. Acta Physica Sinica, 2018, 67(24): 244203(in Chinese). [109] WANG T J, ZHANG H Z, WU F G, et al. 3-5 μm AgGaS2 optical parametric oscillator with prism cavity[J]. Laser Physics, 2009, 19(3): 377-380. [110] RUSSELL D A, EBERT R. Efficient generation and heterodyne detection of 4.75-μm light with second-harmonic generation[J]. Applied Optics, 1993, 32(33): 6638-6644. [111] BUDNI P A, POMERANZ L A, LEMONS M L, et al. Efficient mid-infrared laser using 1.9-μm-pumped Ho∶YAG and ZnGeP2 optical parametric oscillators[J]. Josa B, 2000, 17(5): 723-728. [112] VODOPYANOV K L, SCHUNEMANN P G. Efficient difference-frequency generation of 7-20 μm radiation in CdGeAs2[J]. Optics Letters, 1998, 23(14): 1096-1098. [113] ISAENKO L, YELISSEYEV A, LOBANOV S, et al. LiInSe2: a biaxial ternary chalcogenide crystal for nonlinear optical applications in the midinfrared[J]. Journal of Applied Physics, 2002, 91(12): 9475-9480. [114] 马佳仁,黄昌保,倪友保,等.高压辅助法制备红外非线性AgGaGe5Se12、AgGaGeS4晶体[J].人工晶体学报,2018,47(12):2423-2428. MA J R, HUANG C B, NI Y B, et al. High-presure-assisted preparation of infrared nonlinear crystal AgGaGe5Se12 and AgGaGeS4[J]. Journal of Synthetic Crystals, 2018, 47(12): 2423-2428(in Chinese). [115] YAO J Y, MEI D J, BAI L, et al. BaGa4Se7: a new congruent-melting IR nonlinear optical material[J]. Inorganic Chemistry, 2010, 49(20): 9212-9216. [116] ISAENKO L, YELISSEYEV A, LOBANOV S, et al. Growth and properties of LiGaX2 (X=S, Se, Te) single crystals for nonlinear optical applications in the mid-IR[J]. Crystal Research and Technology, 2003, 38(35): 379-387. [117] DOU Y W, CHEN Y, LI Z, et al. SrCdGeS4 and SrCdGeSe4: promising infrared nonlinear optical materials with congruent-melting behavior[J]. Crystal Growth & Design, 2019, 19(2): 1206-1214. [118] 陈创天.氧化物型晶体电光和非线性光学效应的阴离子配位基团理论[J].中国科学,1977,7(6):579-593. CHEN C T. Theory of anionic coordination groups for electro-optic and nonlinear optical effects of oxide crystals[J]. Science in China, SerA, 1977, 7(6): 579-593(in Chinese). [119] MAKER P D, TERHUNE R W. Study of optical effects due to an induced polarization third order in the electric field strength[J]. Physical Review, 1965, 137(3A): A801-A818. [120] KAMINOW I P, JOHNSTON W D. Quantitative determination of sources of the electro-optic effect in LiNbO3 and LiTaO3[J]. Physical Review, 1967, 160(3): 519-522. [121] PAPUCHON M. Recent progresses in electrooptic modulation and switching using LiNbO3 waveguides[J]. Frequenz, 1978, 32(3): 75-78. [122] SASAKI H, DE LA RUE R M. Electro-optic Y-junction modulator/switch[J]. Electronics Letters, 1976, 12(18): 459. [123] 孙 军,郝永鑫,张 玲,等.铌酸锂晶体及其应用概述[J].人工晶体学报,2020,49(6):947-964. SUN J, HAO Y X, ZHANG L, et al. Brief review of lithium niobate crystal and its applications[J]. Journal of Synthetic Crystals, 2020, 49(6): 947-964(in Chinese). [124] SHANG J F, SUN J, LI Q L, et al. Single-block pulse-on electro-optic Q-switch made of LiNbO3[J]. Scientific Reports, 2017, 7: 4651. [125] 张 玲,韩文卿,孙 军,等.高温度稳定性系列铌酸锂电光调Q开关的研制[J].人工晶体学报,2010,39(4):931-935. ZHANG L, HAN W Q, SUN J, et al. Development of series lithium niobate electro-optic Q-switch with high temperature stability[J]. Journal of Synthetic Crystals, 2010, 39(4): 931-935(in Chinese). [126] 孙 军,孔勇发,李 兵,等.等径控制系统的改进及在光学级铌酸锂生长中的应用[J].人工晶体学报,2004,33(3):305-309. SUN J, KONG Y F, LI B, et al. Improvement of diameter-constant control system and its application in the growth of optical grade lithium niobate crystals[J]. Journal of Synthetic Crystals, 2004, 33(3): 305-309(in Chinese). [127] WARNER J. Simulation of a double 45°, z-cut KDP, electro-optic Q-switch by desk-top computer[J]. Optics & Laser Technology, 1971, 3(4): 215-217. [128] ROSNER R D, TURNER E H, KAMINOW I P. Clamped electrooptic coefficients of KDP and quartz[J]. Applied Optics, 1967, 6(4): 778. [129] GOODNO G D, GUO Z, MILLER R J D, et al. Investigation of β-BaB2O4 as a Q switch for high power applications[J]. Applied Physics Letters, 1995, 66(13): 1575-1577. [130] LEBIUSH E, LAVI R, TZUK Y, et al. High repetition rate end-pumped electro-optic RTP Q-switch Nd∶YVO4 laser[C]. Proceedings of the Lasers and Electro-Optics Europe, Nice, France, F. IEEE Xplore, 2000. [131] KONG H K, WANG J Y, ZHANG H J, et al. Growth, properties and application as an electrooptic Q-switch of langasite crystal[J]. Journal of Crystal Growth, 2003, 254(3/4): 360-367. [132] 郑大怀,吴 婧,商继芳,等.电光调Q晶体研究进展[J].中国科学:技术科学,2017,47(11):1139-1148. ZHENG D H, WU J, SHANG J F, et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica (Technologica), 2017, 47(11): 1139-1148(in Chinese). [133] ZGONIK, BERNASCONI, DUELLI, et al. Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO3 crystals[J]. Physical Review B, Condensed Matter, 1994, 50(9): 5941-5949. [134] ZGONIK M, NAKAGAWA K, GÜNTER P. Electro-optic and dielectric properties of photorefractive BaTiO3 and KNbO3[J]. Josa B, 1995, 12(8): 1416-1421. [135] WANG J Y, GUAN Q C, WEI J Q, et al. Growth and characterization of cubic KTa1-xNbxO3 crystals[J]. Journal of Crystal Growth, 1992, 116(1/2): 27-36. [136] 孙金海,蔡 禾,张旭涛,等.ZnTe晶体对太赫兹波的电光响应及极化匹配[J].红外与激光工程,2019,48(12):166-170. SUN J H, CAI H, ZHANG X T, et al. Electric-optic response and polarization matching to terahertz pulse within ZnTe crystal[J]. Infrared and Laser Engineering, 2019, 48(12): 166-170(in Chinese). [137] XU F, ZHANG G, LUO M, et al. A powder method for the high-efficacy evaluation of electro-optic crystals[J]. National Science Review, 2020, 8(3): nwaa104. [138] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377. [139] HOFSTADTER R. Alkali halide scintillation counters[J]. Physical Review, 1948, 74(1): 100-101. [140] NITSCHE R. Crystal growth and electro-optic effect of bismuth germanate, Bi4(GeO4)3[J]. Journal of Applied Physics, 1965, 36(8): 2358-2360. [141] 何崇藩,范世马岂,廖晶莹,等.坩埚下降法生长锗酸铋(BGO)大单晶[J].人工晶体,1985,14(S1):37-38. HE C F, FAN S J, LIAO J Y, et al. Growth of large size BGO single crystals by Bridgman method[J]. Journal of Synthetic Crystals, 1985, 14(S1): 37-38(in Chinese). [142] 殷之文,薛志麟,胡关钦,等.BGO 大单晶宏观缺陷的研究[J].无机材料学报,1991,6(4):391-398. YIN Z W, XUE Z L, HU G Q, et al. Studies on the macro-defects in BGO single crystals[J]. Journal of Inorganic Materials, 1991, 6(4): 391-398(in Chinese). [143] 范世马岂.微量杂质在 BGO Bridgman 生长和性质上的行为[J].无机材料学报,1991,6(4):399-404. FAN S J. Behavior of trace impurities in BGO bridgman growth and properties[J]. Journal of Inorganic Materials, 1991, 6(4): 399-404(in Chinese). [144] 谢幼玉,魏宗英,殷之文.铕掺杂BGO晶体的辐照损伤及余辉[J].无机材料学报,1992,7(1):1-6. XIE Y Y, WEI Z Y, YIN Z W. Radiation damage and afterglow of europium doped Bi4Ge3O12(BGO) crystal[J]. Journal of Inorganic Materials, 1992, 7(1): 1-6(in Chinese). [145] JI Z M, NI H H, YUAN L Y, et al. Investigation of optical transmittance and light response uniformity of 600-mm-long BGO crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 753: 143-148. [146] 任国浩.无机闪烁晶体在我国的发展史[J].人工晶体学报,2019,48(8):1373-1385. REN G H. Development history of inorganic scintillation crystals in China[J]. Journal of Synthetic Crystals, 2019, 48(8): 1373-1385(in Chinese). [147] ERIKSSON L, TOWNSEND D, ERIKSSON M, et al. Experience with scintillators for PET: towards the fifth generation of PET scanners[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 525(1/2): 242-248. [148] 何崇藩,沈炳孚,苏伟堂,等.X线断层扫描仪用新型闪烁晶体—锗酸铋(Bi4Ge3O12)单晶生长、性质及其应用研究[J].无机材料学报,1981(S1):12-13. HE C F, SHEN B F, SU W T, et al. A study on the growth, properties and application of bismuth germanate (Bi4Ge3O12), a new scintillation crystal for X-ray tomography[J]. Journal of Inorganic Materials, 1981(S1): 12-13(in Chinese). [149] 王绍华,倪海洪,周里华,等.下降法生长500-1000 mm长锗酸铋晶体的装置与方法:CN102787350A[P].2012-11-21. WANG S H, NI H H, ZHOU L H, et al. Device and method for growth of 500-1000 mm long bismuth germanate crystal by drop method: CN102787350A[P]. 2012-11-21(in Chinese). [150] MELCHER C L, SCHWEITZER J S, UTSU T, et al. Scintillation properties of GSO[J]. IEEE Transactions on Nuclear Science, 1990, 37(2): 161-164. [151] 林 挺,许志斌,邓莲芸,等.Ce∶Lu2SiO5闪烁陶瓷的放电等离子烧结与发光性能[J].无机材料学报,2011,26(11):1210-1214. LIN T, XU Z B, DENG L Y, et al. Spark plasma sintering of Ce3+∶Lu2SiO5 scintillation ceramics and its luminescent characteristics[J]. Journal of Inorganic Materials, 2011, 26(11): 1210-1214(in Chinese). [152] 秦来顺,任国浩.硅酸镥闪烁晶体的研究进展与发展方向[J].人工晶体学报,2003,32(4):286-294. QIN L S, REN G H. Progress and prospect in the development of LSO scintillation crystal[J]. Journal of Synthetic Crystals, 2003, 32(4): 286-294(in Chinese). [153] WU Y T, KOSCHAN M, LI Q, et al. Revealing the role of calcium codoping on optical and scintillation homogeneity in Lu2SiO5: Ce single crystals[J]. Journal of Crystal Growth, 2018, 498: 362-371. [154] DORENBOS P, DE HAAS J T M, VAN EIJK C W E, et al. Nonlinear response in the scintillation yield of Lu2SiO5∶Ce3[J]. IEEE Transactions on Nuclear Science, 1994, 41(4): 735-737. [155] 顾 鹏,王鹏刚,官伟明,等.LYSO∶Ce闪烁晶体的研究进展[J].人工晶体学报,2021,50(10):1858-1869. GU P, WANG P G, GUAN W M, et al. Research progress on LYSO∶Ce scintillation crystals[J]. Journal of Synthetic Crystals, 2021, 50(10): 1858-1869(in Chinese). [156] 严成锋,赵广军,张连翰,等.大尺寸Ce∶Lu1.6Y0.4SiO5闪烁晶体的生长和光谱特性[J].无机材料学报,2005,20(6):1301-1305. YAN C F, ZHAO G J, ZHANG L H, et al. Crystal growth and optical characterization of large-sized cerium-doped Lu1.6Y0.4SiO5[J]. Journal of Inorganic Materials, 2005, 20(6): 1301-1305.(in Chinese) [157] BLAHUTA S, BESSIÈRE A, GOURIER D, et al. Effect of the X-ray dose on the luminescence properties of Ce∶LYSO and co-doped Ca, Ce∶LYSO single crystals for scintillation applications[J]. Optical Materials, 2013, 35(10): 1865-1868. [158] TANJI K, ISHII M, USUKI Y, et al. Crystal growth of PbWO4 by the vertical Bridgman method: effect of crucible thickness and melt composition[J]. Journal of Crystal Growth, 1999, 204(4): 505-511. [159] ZHAO W, RISTIC G, ROWLANDS J A. X-ray imaging performance of structured cesium iodide scintillators[J]. Medical Physics, 2004, 31(9): 2594-2605. [160] SHAH K S, GLODO J, KLUGERMAN M, et al. LaCl3∶Ce scintillator for γ-ray detection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 505(1/2): 76-81. [161] 王海丽,陈建荣,李 辉,等.LaBr3∶Ce闪烁晶体的生长及性能研究[J].人工晶体学报,2018,47(6):1192-1196. WANG H L, CHEN J R, LI H, et al. Growth and properties study of LaBr3∶Ce scintillation crystal[J]. Journal of Synthetic Crystals, 2018, 47(6): 1192-1196(in Chinese). [162] DANEVICH F A, GEORGADZE A S, KOBYCHEV V V, et al. The search of 2β decay of 116Cd with 116CdWO4 crystal scintillators[J]. AIP Conference Proceedings, 1995, 327(1): 285-289. [163] SHIRWADKAR U, GLODO J, VAN LOEF E V, et al. Scintillation properties of Cs2LiLaBr6 (CLLB) crystals with varying Ce3+ concentration[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652(1): 268-270. [164] BESSIERE A, DORENBOS P, van EIJK C W E, et al. Luminescence and scintillation properties of CS[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 537(1/2): 242-246. [165] 成双良,任国浩,吴云涛.Cs2HfCl6和Cs2HfCl6∶Tl晶体的生长、光学和闪烁性能研究[J].人工晶体学报,2021,50(5):803-808. CHENG S L, REN G H, WU Y T. Optical and scintillation properties of Cs2HfCl6 and Cs2HfCl6∶Tl single crystals grown by the Bridgman method[J]. Journal of Synthetic Crystals, 2021, 50(5): 803-808(in Chinese). [166] UTSU T, AKIYAMA S. Growth and applications of Gd2SiO5∶Ce scintillators[J]. Journal of Crystal Growth, 1991, 109(1/2/3/4): 385-391. [167] YANG X B, LI H J, BI Q Y, et al. Growth of large-sized Ce∶Y3Al5O12 (Ce∶YAG) scintillation crystal by the temperature gradient technique (TGT)[J]. Journal of Crystal Growth, 2009, 311(14): 3692-3696. [168] ZHONG J P, LIANG H B, SU Q, et al. Effects of annealing treatments on luminescence and scintillation properties of Ce∶Lu3Al5O12 crystal grown by Czochralski method[J]. Journal of Rare Earths, 2007, 25(5): 568-572. [169] MENG F, KOSCHAN M, TYAGI M, et al. A novel method to create an intrinsic reflective layer on a Gd3Ga3Al2O12∶Ce scintillation crystal[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 763: 591-595. [170] YANG F, PAN S K, DING D Z, et al. Growth and optical properties of the Ce-doped Li6Gd(BO3)3 crystal grown by the modified Bridgman method[J]. Journal of Alloys and Compounds, 2009, 484(1/2): 837-840. [171] WU Y G, GU M, CAO E H, et al. Design of a one-dimensional photonic crystal for the modification of BaF2 scintillation spectrum[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 496(1): 129-137. [172] COMBES C M, DORENBOS P, VAN EIJK C W E, et al. Optical and scintillation properties of LiBaF3∶Ce crystals[J]. Journal of Luminescence, 1997, 72/73/74: 753-755. [173] SHIMAMURA K, MUJILATU N, NAKANO K, et al. Growth and characterization of Ce-doped LiCaAlF6 single crystals[J]. Journal of Crystal Growth, 1999, 197(4): 896-900. [174] 朱梦淇,温 航,王 彪,等.钙钛矿型闪烁晶体的研究进展[J].人工晶体学报,2021,50(10):1844-1857. ZHU M Q, WEN H, WANG B, et al. Research progress of perovskite-type scintillation crystals[J]. Journal of Synthetic Crystals, 2021, 50(10): 1844-1857(in Chinese). [175] 武 蕊,范东海,康 阳,等.半导体辐射探测材料与器件研究进展[J].人工晶体学报,2021,50(10):1813-1829. WU R, FAN D H, KANG Y, et al. Research progress on semiconductor materials and devices for radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813-1829(in Chinese). [176] 于 晖,张蒙蒙,杜园园,等.CdZnTe伽马射线探测器的能谱特性分析[J].人工晶体学报,2021,50(10):1883-1891. YU H, ZHANG M M, DU Y Y, et al. Analysis on energy spectra for CdZnTe gamma ray detector[J]. Journal of Synthetic Crystals, 2021, 50(10): 1883-1891(in Chinese). [177] JORIO A, CURRAT R, MYLES D A A, et al. Ferroelastic phase transition in Cs3Bi2I9: a neutron diffraction study[J]. Physical Review B, 2000, 61(6): 3857-3862. [178] WANG W Z, MENG H, QI H Z, et al. Electronic-grade high-quality perovskite single crystals by a steady self-supply solution growth for high-performance X-ray detectors[J]. Advanced Materials, 2020, 32(33): e2001540. [179] LI J C, DU X Y, NIU G D, et al. Rubidium doping to enhance carrier transport in CsPbBr3 single crystals for high-performance X-ray detection[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 989-996. [180] 覃皓明,申南南,何亦辉.熔体法制备无机钙钛矿半导体核辐射探测晶体与器件的研究进展[J].人工晶体学报,2021,50(10):1830-1843. QIN H M, SHEN N N, HE Y H. Research progress on the melt-grown inorganic perovskite semiconductor single crystals and devices for nuclear radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1830-1843(in Chinese). [181] LIU J, ZHANG Y. Growth of lead iodide single crystals used for nuclear radiation detection of Gamma-rays[J]. Crystal Research and Technology, 2017, 52(3): 1600370. [182] HANY I, YANG G, PHAN Q V, et al. Thallium lead iodide (TlPbI3) single crystal inorganic perovskite: electrical and optical characterization for gamma radiation detection[J]. Materials Science in Semiconductor Processing, 2021, 121: 105392. [183] 郑燕青,施尔畏,李汶军,等.晶体生长理论研究现状与发展[J].无机材料学报,1999,14(3):321-332. ZHENG Y Q, SHI E W, LI W J, et al. Research and development of the theories of crystal growth[J]. Journal of Inorganic Materials, 1999, 14(3): 321-332(in Chinese). [184] DONNAY J, HARKER D. A new law of crystal morphology extending the law of Bravais[J]. American Mineralogist, 1937, 22: 446-467. [185] FRANK F C. In: growth and perfection of crystals[M]. New York: John Wiley, 1958. [186] 李静波,金海波.材料动力学理论[M].北京:北京理工大学出版社,2017. LI J B, JIN H B. Kinetics of materials [M]. Beijing: Beijing Institute of Technology Press, 2017(in Chinese). [187] 闵乃本.晶体生长的物理基础[M].南京:南京大学出版社,2019. MIN N B. Physical basis of crystal growth[M]. Nanjing: Nanjing University Press, 2019(in Chinese). [188] 殷绍唐.晶体生长微观机理及晶体生长边界层模型[M].北京:科学出版社,2020. YIN S T. Microcosmic mechanism of crystal growth and boundary layer model of crystal growth[M]. Beijing: Science Press, 2020(in Chinese). [189] HARTMAN P, PERDOK W G. On the relations between structure and morphology of crystals. I[J]. Acta Crystallographica, 1955, 8(1): 49-52. [190] 仲维卓,刘光照,施尔畏,等.在热液条件下晶体的生长基元与晶体形成机理[J].中国科学 (B辑 化学 生命科学 地学),1994,24(4):349-355. ZHONG W Z, LIU G Z, SHI E W, et al. Crystal growth unit and crystal formation mechanism under hydrothermal condition[J]. Science in China, SerB, 1994, 24(4): 349-355(in Chinese). [191] 仲维卓,罗豪甦,华素坤,等.负离子配位多面体生长基元和晶体形貌(英文)[J].人工晶体学报,2004(4):475-478. ZHONG W Z, LUO H S, HUA S K, et al. Anionic coordination polyhedron growth units and crystal morphology[J]. Journal of Synthetic Crystals, 2004(4): 475-478. [192] UELTZEN M. The Verneuil flame fusion process: substances[J]. Journal of Crystal Growth, 1993, 132(1/2): 315-328. [193] KURLOV V N. Sapphire: properties, growth, and applications[M]//Reference Module in Materials Science and Materials Engineering. Amsterdam: Elsevier, 2016. [194] BOONIN K, SONGPAKOB W, AMINAH N S, et al. Fabrication of ruby by flame fusion technique and their properties[J]. Materials Today: Proceedings, 2018, 5(7): 15010-15013. [195] WONGWAN W, SANGWARANATEE N, KEAWKHAO J, et al. Fabrication of Mn2+ doped Al2O3 bulk crystal by flame fusion technique and their properties[J]. Materials Today: Proceedings, 2021, 43: 2641-2646. [196] 李华彬,林理彬,伍登学.Mn∶MgAl2O4单晶体的生长及光谱特性研究[J].激光杂志,1993,14(5):236-240+275. LI H B, LIN L B, WU D X. Investigation of Mn∶MgAl2O4 single crystal growth and it's spectroscopy properties[J]. Laser Journal, 1993, 14(5): 236-240+275(in Chinese). [197] 何珊珊,曹 盼,谭红琳,等.天然尖晶石和焰熔法合成尖晶石的光谱特征对比研究[J].激光与光电子学进展,2021,58(5):317-324. HE S S, CAO P, TAN H L, et al. Comparative study on spectral characteristics of natural and flame-melting synthetic spinels[J]. Laser & Optoelectronics Progress, 2021, 58(5): 317-324(in Chinese). [198] 毕孝国,黄 菲,何风鸣,等.SrTiO3单晶体生长过程中的溢流问题[J].人工晶体学报,2005,34(2):328-331. BI X G, HUANG F, HE F M, et al. Runover during the growth of SrTiO3 grystal[J]. Journal of Synthetic Crystals, 2005, 34(2): 328-331(in Chinese). [199] 毕孝国,修稚萌,马伟民,等.生长气氛和速度在金红石(TiO2)单晶体生长中的作用研究[J].人工晶体学报,2004,33(4):657-661. BI X G, XIU Z M, MA W M, et al. Study on effect of growth atmosphere and rate on preparation of rutile (TiO2) single crystal[J]. Journal of Synthetic Crystals, 2004, 33(4): 657-661(in Chinese). [200] LABELLE H E Jr. EFG, the invention and application to sapphire growth[J]. Journal of Crystal Growth, 1980, 50(1): 8-17. [201] BRIDGMAN P W. Thermal conductivity and thermo-electromotive force of single metal crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 1925, 11(10): 608-612. [202] STOCKBARGER D C. The production of large single crystals of lithium fluoride[J]. Review of Scientific Instruments, 1936, 7(3): 133-136. [203] DEMINA S E, BYSTROVA E N, POSTOLOV V S, et al. Use of numerical simulation for growing high-quality sapphire crystals by the Kyropoulos method[J]. Journal of Crystal Growth, 2008, 310(7/8/9): 1443-1447. [204] PFANN W G. Principles of zone-melting[J]. JOM, 1952, 4(7): 747-753. [205] ZHANG X X, FRIEDRICH S, FRIEDRICH B. Production of high purity metals: a review on zone refining process[J]. Journal of Crystallization Process and Technology, 2018, 8(1): 33-55. [206] KECK P H, GOLAY M J E. Crystallization of silicon from a floating liquid zone[J]. Physical Review, 1953, 89(6): 1297. [207] VIECHNICKI D, SCHMID F. Growth of large monocrystals of Al2O3 by a gradient furnace technique[J]. Journal of Crystal Growth, 1971, 11(3): 345-347. [208] SCHMID F, KHATTAK C P. Growth of Co∶MgF2 and Ti∶Al2O3 crystals for solid state laser applications[M]//Tunable Solid State Lasers. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 122-128. [209] JOYCE D B, SCHMID F. Progress in the growth of large scale Ti: sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers[J]. Journal of Crystal Growth, 2010, 312(8): 1138-1141. |
[1] | 曲刚, 赵希波, 蒋宛莉, 王泽岩, 孙洵, 于浩海, 徐现刚. 从人工晶体研究发展历程浅谈基础理论研究的引领作用[J]. 人工晶体学报, 2023, 52(8): 1548-1552. |
[2] | 王萌萌, 尹延如, 丁晓圆, 张晶, 付秀伟, 贾志泰, 陶绪堂. 倍半氧化物晶体及其1~3 μm波段激光性能研究进展[J]. 人工晶体学报, 2023, 52(7): 1169-1194. |
[3] | 刘小虎, 李坚富, 朱昭捷, 涂朝阳, 王阁阳, 杨金芳, 朱江峰, 王燕. Yb∶CaGdAlO4晶体及其超快激光技术研究进展[J]. 人工晶体学报, 2023, 52(7): 1195-1207. |
[4] | 孙贵花, 张庆礼, 李加红, 罗建乔, 王小飞, 高进云. Yb,Ho∶GdScO3晶体生长及光谱性能分析[J]. 人工晶体学报, 2023, 52(7): 1243-1249. |
[5] | 刘青雄, 王天予, 刘孚安, 吴倩, 尹延如, 赫崇君, 高泽亮, 夏明军. 非线性光学晶体K3B6O10Br的生长与光电性能研究[J]. 人工晶体学报, 2023, 52(7): 1296-1301. |
[6] | 颜涛, 范雨杰, 徐峰, 陈昱, 罗敏. KLi(HC3N3O3)·2H2O晶体的电光效应和生长研究[J]. 人工晶体学报, 2023, 52(7): 1302-1307. |
[7] | 魏玲莉, 倪友保, 黄昌保, 吴海信, 王振友, 胡倩倩, 余学舟, 刘国晋, 周强. 大尺寸ZnTe晶体的生长与性能[J]. 人工晶体学报, 2023, 52(7): 1317-1324. |
[8] | 郭俊, 刘坚, 陈鹏, 宋青松, 张志恒, 徐晓东, 徐军. Nd∶CaYAlO4单晶光纤的生长及光谱性能研究[J]. 人工晶体学报, 2023, 52(7): 1345-1351. |
[9] | 隋占仁, 徐凌波, 崔灿, 王蓉, 杨德仁, 皮孝东, 韩学峰. 数值模拟顶部籽晶溶液生长法制备单晶碳化硅的研究进展[J]. 人工晶体学报, 2023, 52(6): 1067-1085. |
[10] | 李大鹏, 孙国富, 葛素香. 溶剂热法制备金属酞菁晶体的研究进展[J]. 人工晶体学报, 2023, 52(4): 678-687. |
[11] | 王苗苗, 张传成, 任浩, 唐绪兵, 丁守军, 邹勇, 黄护林. 不同高径比下浮区晶体生长熔体内对流不稳定性分析[J]. 人工晶体学报, 2023, 52(2): 220-228. |
[12] | 陈建荣, 张杰, 师瑞泽, 石爽爽, 杨志奇. 晶体人生丨黄朝恩:从研发到成果转化的非线性“晶”彩人生[J]. 人工晶体学报, 2023, 52(12): 2089-2093. |
[13] | 李荣臻, 赵小玻, 魏华阳, 李丹, 周振翔, 倪代秦, 李勇, 李宏凯, 林清莲. 多孔石墨对碳化硅晶体生长影响的数值模拟研究[J]. 人工晶体学报, 2023, 52(12): 2174-2185. |
[14] | 刘文娇, 张明记, 辛显辉, 郝元凯, 付秀伟, 张健, 贾志泰, 陶绪堂. 微下拉法生长Tb3AlxGa5-xO12磁光晶体及其性能表征[J]. 人工晶体学报, 2023, 52(1): 8-16. |
[15] | 力茂林, 徐悟生, 张斌, 田东升, 尹祖荣, 张镇玺, 贾永超, 徐朝鹏. 大尺寸掺铊碘化钠晶体生长及闪烁性能[J]. 人工晶体学报, 2023, 52(1): 17-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||