人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1560-1572.
张振1, 樊仲维2, 苏良碧1
收稿日期:
2022-08-01
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
苏良碧,博士,研究员。E-mail:suliangbi@mail.sic.ac.cn作者简介:
张 振(1993—),男,湖北省人,博士研究生。E-mail:zhangzhen@mail.sic.ac.cn。基金资助:
ZHANG Zhen1, FAN Zhongwei2, SU Liangbi1
Received:
2022-08-01
Online:
2022-10-15
Published:
2022-11-02
摘要: 高功率固体激光技术的发展史就是一部与“废热”的斗争史,为抑制热效应对光束质量的不利影响,先后出现了热容激光器、薄片激光器、板条激光器以及光纤激光器,新的增益介质形态结合先进的散热技术将激光输出功率提升至百千瓦量级。固体激光增益介质的热学性能是限制激光功率进一步取得突破的重要瓶颈。因此,寻找具备超高热导率的激光晶体材料意义重大。本文介绍了上述四种激光器的基本原理及其在高功率激光方面取得的研究进展,从提高增益介质材料热导率的角度出发,对目前已有的方法和研究成果进行了分析与总结,对超热导激光晶体研究和高功率激光技术的发展进行了展望。
中图分类号:
张振, 樊仲维, 苏良碧. 高功率激光与“超热导”激光晶体[J]. 人工晶体学报, 2022, 51(9-10): 1560-1572.
ZHANG Zhen, FAN Zhongwei, SU Liangbi. High-Power Laser and Ultra-High Thermal Conductivity Laser Crystals[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1560-1572.
[1] MAIMAN T H. Stimulated optical radiation in ruby[J]. Nature, 1960, 187(4736): 493-494. [2] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883): 1614-1617. [3] VINCENTI H, QUÉRÉ F. Attosecond lighthouses: how to use spatiotemporally coupled light fields to generate isolated attosecond pulses[J]. Physical Review Letters, 2012, 108(11): 113904. [4] LI W Q, GAN Z B, YU L H, et al. 339 J high-energy Ti∶sapphire chirped-pulse amplifier for 10 PW laser facility[J]. Optics Letters, 2018, 43(22): 5681-5684. [5] AYDIN Y O, FORTIN V, VALLÉE R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545. [6] 雷小丽,孙 玲,刘 洋,等.达信公司百千瓦陶瓷激光器技术综述[J].激光与红外,2011,41(9):948-952. LEI X L, SUN L, LIU Y, et al. Laser with 100 kW output power developed by the Textron company[J]. Laser & Infrared, 2011, 41(9): 948-952(in Chinese). [7] INJEYAN H, GOODNO G D, PENN M, et al. High-power laser handbook[M]. New York: McGraw-Hill, 2011 [8] 陈金宝,郭少锋.高能固态激光器技术路线分析[J].中国激光,2013,40(6):69-75. CHEN J B, GUO S F. Review on technical approaches of high energy solid-state lasers[J]. Chinese Journal of Lasers, 2013, 40(6): 69-75(in Chinese). [9] ALBRECHT G F, SUTTON S B, GEORGE E V, et al. Solid state heat capacity disk laser[J]. Laser and Particle Beams, 1998, 16(4): 605-625. [10] WALTERS C T, DULANEY J L, CAMPBELL B E, et al. Nd-glass burst laser with kW average power output[J]. IEEE Journal of Quantum Electronics, 1995, 31(2): 293-300. [11] YAMAMOTO R M, PARKER J M, ALLEN K L, et al. Evolution of a solid state laser[C]//Defense and Security Symposium. Proc SPIE 6552, Laser Source Technology for Defense and Security III, Orlando, Florida, USA. 2007, 6552: 24-33. [12] YAMAMOTO R M, BHACHU B S, CUTTER K P, et al. The use of large transparent ceramics in a high powered, diode pumped solid state laser[J]. 2008: WC5. [13] LAFORTUNE K N, HURD R L, JOHANSSON E M, et al. Intracavity adaptive correction of a 10-kW solid state heat-capacity laser[C]//Lasers and Applications in Science and Engineering. Proc SPIE 5333, Laser Resonators and Beam Control VII, San Jose, Ca, USA. 2004, 5333: 53-61. [14] VETROVEC J. Compact active mirror laser (CAMIL)[C]//High-Power Lasers and Applications. Proc SPIE 4630, Solid State Lasers XI, San Jose, California, USA. 2002, 4630: 1-12. [15] KALISKY Y Y, KALISKY O. The status of high-power lasers and their applications in the battlefield[C]//2010: 091003. [16] VETROVEC J, KOUMVAKALIS A, SHAH R D, et al. Development of solid state disk laser for high-average power[C]//High-Power Lasers and Applications. Proc SPIE 4968, Solid State Lasers XII, San Jose, CA, USA. 2003, 4968: 54-64. [17] STEWEN C, CONTAG K, LARIONOV M, et al. A 1-kW CW thin disc laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2000, 6(4): 650-657. [18] AVIZONIS P V, BOSSERT D J, CURTIN M S, et al. Physics of high performance YB∶YAG thin disk lasers[C]//Conference on Lasers and Electro-Optics. Optical Society of America, 2009: CThA2. [19] RICHARDSON D J, NILSSON J, CLARKSON W A. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92. [20] STILES E. New developments in IPG fiber laser technology[C]//Proceedings of the 5th International Workshop on Fiber Lasers. 2009: 2. [21] SHINER B. The impact of fiber laser technology on the world wide material processing market[C]//CLEO: Applications and Technology. Optical Society of America, 2013: AF2 J.1. [22] OTTO H J, JAUREGUI C, LIMPERT J, et al. Average power limit of fiber-laser systems with nearly diffraction-limited beam quality[C]// Fiber Lasers XIII: Technology, Systems, and Applications. Proc SPIE 9728, San Jose, California, USA. 2016, 9728: 82-87. [23] 刘兆军,高悉宝,丛振华,等.晶体光纤及晶体衍生光纤制备与应用综述[J].光子学报,2019,48(11):28-46. LIU Z J, GAO X B, CONG Z H, et al. Crystal fiber and crystal-derived fiber preparation and application: a review[J]. Acta Photonica Sinica, 2019, 48(11): 28-46(in Chinese). [24] DÉLEN X, PIEHLER S, DIDIERJEAN J, et al. 250 W single-crystal fiber Yb∶YAG laser[J]. Optics Letters, 2012, 37(14): 2898-2900. [25] DUBINSKII M, ZHANG J, FROMZEL V, et al. Low-loss ‘crystalline-core/crystalline-clad’ (C4) fibers for highly power scalable high efficiency fiber lasers[J]. Optics Express, 2018, 26(4): 5092-5101. [26] CAHILL D G, LEE S M, SELINDER T I. Thermal conductivity of κ-Al2O3 and α-Al2O3 wear-resistant coatings[J]. Journal of Applied Physics, 1998, 83(11): 5783-5786. [27] GRIEBNER U, PETROV V, PETERMANN K, et al. Passively mode-locked Yb∶Lu2O3 laser[J]. Optics Express, 2004, 12(14): 3125-3130. [28] BERMAN R, SIMON F E, WILKS J. Thermal conductivity of dielectric crystals: the ‘umklapp’ process[J]. Nature, 1951, 168(4268): 277-280. [29] EUCKEN A. The heat conductivity of certain crystals at low temperatures[J]. Phys Zs, 1911, 12: 1005. [30] BERMAN R, SIMON F E, ZIMAN J M. The thermal conductivity of diamond at low temperatures[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1953, 220(1141): 171-183. [31] SLACK G A. Nonmetallic crystals with high thermal conductivity[J]. Journal of Physics and Chemistry of Solids, 1973, 34(2): 321-335. [32] SLACK G A. The thermal conductivity of nonmetallic crystals[M]//Solid State Physics. Amsterdam: Elsevier, 1979: 1-71. [33] TROPF W J, THOMAS M E, HARRIS T J. Properties of crystals and glasses[J]. Handbook of Optics, 1995, 2: 33-61. [34] 张 召,卢文壮,左敦稳.大尺寸单晶金刚石制备的研究进展[J].人工晶体学报,2017,46(12):2417-2421+2437. ZHANG Z, LU W Z, ZUO D W. Progress research on deposition of large size single crystal diamond[J]. Journal of Synthetic Crystals, 2017, 46(12): 2417-2421+2437(in Chinese). [35] KANG J S, LI M, WU H, et al. Experimental observation of high thermal conductivity in boron arsenide[J]. Science, 2018, 361(6402): 575-578. [36] KU S M. Preparation and properties of boron arsenides and boron arsenide-gallium arsenide mixed crystals[J]. Journal of the Electrochemical Society, 1966, 113(8): 813. [37] TIAN F, SONG B, CHEN X, et al. Unusual high thermal conductivity in boron arsenide bulk crystals[J]. Science, 2018, 361(6402): 582-585. [38] LINDSAY L, BROIDO D A, REINECKE T L. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? [J]. Physical Review Letters, 2013, 111(2): 025901. [39] WATANABE K, TANIGUCHI T, KANDA H. Ultraviolet luminescence spectra of boron nitride single crystals grown under high pressure and high temperature[J]. Physica Status Solidi (a), 2004, 201(11): 2561-2565. [40] TANIGUCHI T, YAMAOKA S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure[J]. Journal of Crystal Growth, 2001, 222(3): 549-557. [41] SLACK G A, SCHOWALTER L J, MORELLI D, et al. Some effects of oxygen impurities on AlN and GaN[J]. Journal of Crystal Growth, 2002, 246(3/4): 287-298. [42] WANG Q K, LEI D, HE G D, et al. Characterization of 60 mm AlN single crystal wafers grown by the physical vapor transport method[J]. Physica Status Solidi (a), 2019, 216(16): 1900118. [43] MUTH J F, BROWN J D, et al. Absorption coefficient and refractive index of GaN, AlN and AlGaN alloys[J]. MRS Internet Journal of Nitride Semiconductor Research, 1999, 4(S1): 502-507. [44] YOSHIDA T, IMANISHI M, KITAMURA T, et al. Development of GaN substrate with a large diameter and small orientation deviationn[J]. Physica Status Solidi B, 2017, 254(8): 1600671. [45] KANG J S, WU H, HU Y J. Thermal properties and phonon spectral characterization of synthetic boron phosphide for high thermal conductivity applications[J]. Nano Letters, 2017, 17(12): 7507-7514. [46] ZHENG Q Y, LI S, LI C H, et al. High thermal conductivity in isotopically enriched cubic boron phosphide[J]. Advanced Functional Materials, 2018, 28(43): 1805116. [47] NWAGWU U. Flux growth and characteristics of cubic boron phosphide[D]. Manhattan, Kansas: Kansas State University, 2013: 37-59. [48] KUMASHIRO Y, YAO T, GONDA S. Crystal growth of boron phosphide by high pressure flux method[J]. Journal of Crystal Growth, 1984, 70(1/2): 515-518. [49] WEBER M J. Handbook of optical materials[M]. Boca Raton, FL: CRC Press, 2002 [50] RICHMAN D. Vapor phase growth and properties of aluminum phosphide[J]. Journal of the Electrochemical Society, 2019, 115(9): 945. [51] MONEMAR B. Determination of band gap and refractive index of AIP from optical absorption[J]. Solid State Communications, 1970, 8(16): 1295-1298. [52] GOLDBERG Y A. Gallium phosphide (Gap)[M]//LEVINSHTEIN M, RUMYANTSEV S, SHUR M. Handbook Series on Semiconductor Parameters. Singapore: World Scientific Pub Co Inc, 1996: 104-124. [53] YOUNG M, LIU X, ZHANG D, et al. Latest developments in vertical gradient freeze (VGF) technology: GaAs, InP, and GaP[J]. Materials Science and Engineering: B, 1999, 66(1/2/3): 1-6. [54] MARINOPOULOS A G, VILÃO R C, VIEIRA R B L, et al. Defect levels and hyperfine constants of hydrogen in beryllium oxide from hybrid-functional calculations and muonium spectroscopy[J]. Philosophical Magazine, 2017, 97(24): 2108-2128. [55] MASLOV V A, RYLOV G M, MAZURENKO V G, et al. Conditions of growth, structure, spectral and luminescent properties of crystals BeO[C]//Proceedings of the 6th International Conference on crystals growth, Institute of Crystallography, Moscow. 1980: 268-269. [56] VLASKINA S I, SHIN D H. 6H to 3C polytype transformation in silicon carbide[J]. Japanese Journal of Applied Physics, 1999, 38(Part 2, No. 1A/B): L27-L29. [57] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[C]//Materials Science Forum. Trans Tech Publications Ltd, 2016, 858: 5-10. [58] 戴小林,常 青.450 mm IC级硅单晶的制备[J].中国材料进展,2010,29(10):21-24+58. DAI X L, CHANG Q. Growth of 450 mm Cz Si single crystal of IC grade[J]. Materials China, 2010, 29(10): 21-24+58(in Chinese). [59] BORMASHOV V S, TARELKIN S A, BUGA S G, et al. Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method[J]. Diamond and Related Materials, 2013, 35: 19-23. [60] VINS V G, PESTRYAKOV E V. Color centers in diamond crystals: their potential use in tunable and femtosecond lasers[J]. Diamond and Related Materials, 2006, 15(4/5/6/7/8): 569-571. [61] GROTJOHN T A, TRAN D T, YARAN M K, et al. Heavy phosphorus doping by epitaxial growth on the (111) diamond surface[J]. Diamond and Related Materials, 2014, 44: 129-133. [62] NISHITANI-GAMO M, YASU E J, XIAO C Y, et al. Sulfur-doped homoepitaxial (001) diamond with n-type semiconductive properties[J]. Diamond and Related Materials, 2000, 9(3/4/5/6): 941-947. [63] EKIMOV E A, KONDRIN M V. Vacancy-impurity centers in diamond: prospects for synthesis and applications[J]. Physics-Uspekhi, 2017, 60(6): 539-558. [64] TCHERNIJ S D, HERZIG T, FORNERIS J, et al. Single-photon-emitting optical centers in diamond fabricated upon Sn implantation[J]. ACS Photonics, 2017, 4(10): 2580-2586. [65] JAMISON K D, SCHMIDT H K. Doped diamond laser: US5504767[P]. 1996-04-02. [66] SHIOMI H, NISHIBAYASHI Y, SHIKATA S I. Semiconductor lasers comprising rare earth metal-doped diamond: US5812573[P]. 1998-09-22. [67] RAND S C, DESHAZER L G. Visible color-center laser in diamond[J]. Optics Letters, 1985, 10(10): 481-483. [68] WILLIAMS R J, ONDREJ K, BAI Z X, et al. High power diamond Raman lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(5): 1-14. [69] TAIROV Y M, KHLEBNIKOV I I, TSVETKOV V F. Investigation of silicon carbide single crystals doped with scandium[J]. Physica Status Solidi (a), 1974, 25(1): 349-357. [70] KOZANECKI A, JANTSCH W, LANZERSTORFER S, et al. 1.54 μm Luminescence in Er and Er+O Implanted 6H SiC[C]//Materials Science Forum. Trans Tech Publications Ltd, 1997, 258: 1545-1550. [71] WILSON R G, SCHWARTZ R N, ABERNATHY C R, et al. 1.54-μm photoluminescence from Er-implanted GaN and AlN[J]. Applied Physics Letters, 1994, 65(8): 992-994. [72] MARTIN R. Rare Earth doped Ⅲ-nitrides for optoelectronic and spintronic applications: rare earth doped Ⅲ-nitrides for optoelectronic and spintronic applications[M]. Dordrecht: Springer, 2010: 189-219. [73] MEZDROGINA M M, DANILOVSKII E Y, KUZ’MIN R V. Emission from rare-earth ions in GaN wurtzite crystals[J]. Inorganic Materials, 2011, 47(13): 1450-1469. [74] LORENZ K, ALVES E, MONTEIRO T, et al. Optical doping of AlN by rare earth implantation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions With Materials and Atoms, 2006, 242(1/2): 307-310. [75] YANG S, EVANS S M, HALLIBURTON L E, et al. Electron paramagnetic resonance of Er3+ ions in aluminum nitride[J]. Journal of Applied Physics, 2009, 105(2): 023714. [76] PARK J H, STECKL A J. Laser action in Eu-doped GaN thin-film cavity at room temperature[J]. Applied Physics Letters, 2004, 85(20): 4588-4590. [77] PARK J H, STECKL A J. Site specific Eu3+ stimulated emission in GaN host[J]. Applied Physics Letters, 2006, 88(1): 011111. [78] USOV I, ARENDT P N. Method for implantation of high dopant concentrations in wide band gap materials: US20060286784[P]. 2006-12-21. [79] ISHIKAWA R, LUPINI A R, OBA F, et al. Atomic structure of luminescent centers in high-efficiency Ce-doped w-AlN single crystal[J]. Scientific Reports, 2014, 4: 3778. [80] SLACK G A, TANZILLI R A, POHL R O, et al. The intrinsic thermal conductivity of AIN[J]. Journal of Physics and Chemistry of Solids, 1987, 48(7): 641-647. [81] AGGARWAL R L, RIPIN D J, OCHOA J R, et al. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300K temperature range[J]. Journal of Applied Physics, 2005, 98(10): 103514. [82] GAUMÉ R, VIANA B, VIVIEN D, et al. A simple model for the prediction of thermal conductivity in pure and doped insulating crystals[J]. Applied Physics Letters, 2003, 83(7): 1355-1357. [83] SU L B, GUO X S, JIANG D P, et al. Highly-efficient mid-infrared CW laser operation in a lightly-doped 3at.% Er∶SrF2 single crystal[J]. Optics Express, 2018, 26(5): 5558-5563. [84] FAN M Q, LI T, ZHAO J, et al. Continuous wave and ReS2 passively Q-switched Er∶SrF2 laser at ~3 μm[J]. Optics Letters, 2018, 43(8): 1726-1729. [85] ZHANG Z, GUO X S, WANG J Y, et al. High-efficiency 2 μm continuous-wave laser in laser diode-pumped Tm3+, La3+∶CaF2 single crystal[J]. Optics Letters, 2018, 43(17): 4300-4303. [86] WEI L, KUO P K, THOMAS R L, et al. Thermal conductivity of isotopically modified single crystal diamond[J]. Physical Review Letters, 1993, 70(24): 3764-3767. [87] OZHOGIN V I, INYUSHKIN A V, TALDENKOV A N, et al. Isotope effect in the thermal conductivity of germanium single crystals[J]. Journal of Experimental and Theoretical Physics Letters, 1996, 63(6): 490-494. [88] INYUSHKIN A V, TALDENKOV A N, YU YAKUBOVSKY A, et al. Thermal conductivity of isotopically enriched 71 crystal[J]. Semiconductor Science and Technology, 2003, 18(7): 685-688. [89] KREMER R K, GRAF K, CARDONA M, et al. Thermal conductivity of isotopically enriched 28Si: revisited[J]. Solid State Communications, 2004, 131(8): 499-503. [90] CHEN K, SONG B, RAVICHANDRAN N K, et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride[J]. Science, 2020, 367(6477): 555-559. [91] JULIAN C L. Theory of heat conduction in rare-gas crystals[J]. Physical Review, 1965, 137(1A): A128-A137. [92] BROIDO D A, MALORNY M, BIRNER G, et al. Intrinsic lattice thermal conductivity of semiconductors from first principles[J]. Applied Physics Letters, 2007, 91(23): 231922. [93] LI S, ZHENG Q Y, LV Y C, et al. High thermal conductivity in cubic boron arsenide crystals[J]. Science, 2018, 361(6402): 579-581. [94] QIAN X, ZHOU J W, CHEN G. Phonon-engineered extreme thermal conductivity materials[J]. Nature Materials, 2021, 20(9): 1188-1202. |
[1] | 王迪, 汤港, 张博, 王墉哲, 张中晗, 姜大朋, 寇华敏, 苏良碧. Nd,Y∶SrF2激光晶体的位错缺陷表征及分布研究[J]. 人工晶体学报, 2023, 52(7): 1208-1218. |
[2] | 李兴旺, 韩剑锋, 芦佳, 邢晓文, 王永国, 魏磊, 徐学珍. 大尺寸Tm∶YAP复合激光晶体的生长与性能研究[J]. 人工晶体学报, 2023, 52(7): 1236-1242. |
[3] | 王无敌, 王庆国, 薛艳艳, 唐慧丽, 徐子寒, 张晨波, 房前成, 吴锋, 罗平, 徐晓东, 苏良碧, 李岩, 韩建峰, 逯占文, 徐军. Pr3+掺杂碱土混合氟化物激光晶体的生长与发光性能研究[J]. 人工晶体学报, 2023, 52(7): 1258-1269. |
[4] | 黄建华, 吴杰, 黄艺东, 林炎富, 龚兴红, 陈雨金. Er3+,Yb3+∶Ba3Gd(PO4)3晶体的生长、光谱和1.5 μm激光性能[J]. 人工晶体学报, 2023, 52(7): 1286-1295. |
[5] | 李兴旺, 杨国利, 韩剑锋, 王永国, 毕海, 徐学珍. 提拉法生长直径10英寸优质Yb:YAG激光晶体[J]. 人工晶体学报, 2023, 52(4): 547-549. |
[6] | 郑万国, 齐红基. 人类首次实现聚变“点火”,激光聚变取得历史性突破[J]. 人工晶体学报, 2023, 52(1): 1-7. |
[7] | 赵呈春, 张沛雄, 李善明, 房倩楠, 徐民, 陈振强, 杭寅. 稀土离子掺杂氟化物激光晶体研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1573-1587. |
[8] | 董建树, 王庆国, 徐军, 薛艳艳, 王无敌, 曹笑, 唐慧丽, 吴锋, 罗平. 多孔坩埚温度梯度法生长Ho,Y∶CaF2晶体及其光谱性能[J]. 人工晶体学报, 2022, 51(2): 200-207. |
[9] | 夏士兴, 周龙, 许聪, 魏磊, 丁宇, 张丰发. 双温区热扩散掺杂Fe2+∶ZnSe激光晶体的制备及激光输出性能[J]. 人工晶体学报, 2022, 51(11): 1845-1850. |
[10] | 王贝贝, 刘文鹏, 任浩, 张传成, 刘海莲, 邹勇, 丁守军. 钆钪铝石榴石单晶缺陷的微观形貌与成因研究[J]. 人工晶体学报, 2022, 51(11): 1851-1857. |
[11] | 张君, 熊迁, 吴振海, 龙蛟, 赵军普, 郑建刚, 张雄军, 郑奎兴, 魏晓峰. 等离子体电极普克尔盒研究进展[J]. 人工晶体学报, 2021, 50(8): 1593-1601. |
[12] | 于浩海, 潘忠奔, 张怀金, 王继扬. 无序激光晶体及其超快激光研究进展[J]. 人工晶体学报, 2021, 50(4): 648-668. |
[13] | 郭勇文, 黄晋强, 权纪亮. 大尺寸Nd,Ce∶YAG激光晶体的生长及缺陷研究[J]. 人工晶体学报, 2021, 50(2): 244-247. |
[14] | 邱科彬, 庄乃锋, 陈新, 陈玮冬, 张戈, 赵斌. 梯度掺杂的YVO4-Nd∶YVO4复合晶体[J]. 人工晶体学报, 2021, 50(12): 2205-2211. |
[15] | 薛艳艳, 徐晓东, 苏良碧, 徐军. 中红外波段激光晶体的研究进展[J]. 人工晶体学报, 2020, 49(8): 1347-1360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||