人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1626-1642.
郑大怀, 张宇琦, 王烁琳, 刘宏德, 刘士国, 孔勇发, 薄方, 许京军
收稿日期:
2022-08-16
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
孔勇发,博士,教授。E-mail:kongyf@nankai.edu.cn作者简介:
郑大怀(1987—),男,河南省人,博士,高级工程师。E-mail:dhzheng@nankai.edu.cn。郑大怀,南开大学物理科学学院高级工程师,硕士生导师。长期从事人工晶体生长、铌酸锂晶体光折变及其实时动态全息三维显示等研究工作。主持国家自然科学青年基金、天津市自然科学青年基金,参与国家自然科学基金重点项目、面上项目。基金资助:
ZHENG Dahuai, ZHANG Yuqi, WANG Shuolin, LIU Hongde, LIU Shiguo, KONG Yongfa, BO Fang, XU Jingjun
Received:
2022-08-16
Online:
2022-10-15
Published:
2022-11-02
摘要: 铌酸锂(LiNbO3, LN)是一种多功能多用途的人工晶体,被称为“光学硅”。近期以铌酸锂薄膜(LNOI)为平台的集成光子学发展迅速,有将“光学硅”变为现实的趋势。高集成意味着高局域高光强密度,使铌酸锂晶体的光折变效应变得不容忽视。光折变效应是光致折射率变化的简称,是非线性光学的重要组成部分。本文回顾了铌酸锂晶体光折变效应的发现和机理、不同掺杂及掺杂组合对光折变效应的调控,重点介绍了铋镁双掺铌酸锂晶体的光折变性能及相关理论和实验结果,概述了铌酸锂光折变波导和孤子,及基于LNOI的集成光子学器件中的光折变效应,并对未来的研究趋势进行了展望。期待我国发挥铌酸锂光折变研究及LNOI产业化的优势,在光子学芯片的竞争中占据主导地位。
中图分类号:
郑大怀, 张宇琦, 王烁琳, 刘宏德, 刘士国, 孔勇发, 薄方, 许京军. 铌酸锂晶体的光折变效应[J]. 人工晶体学报, 2022, 51(9-10): 1626-1642.
ZHENG Dahuai, ZHANG Yuqi, WANG Shuolin, LIU Hongde, LIU Shiguo, KONG Yongfa, BO Fang, XU Jingjun. Photorefractive Effect of Lithium Niobate Crystals[J]. Journal of Synthetic Crystals, 2022, 51(9-10): 1626-1642.
[1] KONG Y F, BO F, WANG W W, et al. Recent progress in lithium niobate: optical damage, defect simulation, and on-chip devices[J]. Advanced Materials, 2020, 32(3): e1806452. [2] 郑大怀,吴 婧,商继芳,等.电光调Q晶体研究进展[J].中国科学:技术科学,2017,47(11):1139-1148. ZHENG D H, WU J, SHANG J F, et al. Progress on electro-optic crystals for Q-switches[J]. Scientia Sinica (Technologica), 2017, 47(11): 1139-1148(in Chinese). [3] 高博锋,任梦昕,郑大怀,等.铌酸锂的耄耋之路:历史与若干进展[J].人工晶体学报,2021,50(7):1183-1199. GAO B F, REN M X, ZHENG D H, et al. Long-lived lithium niobate: history and progress[J]. Journal of Synthetic Crystals, 2021, 50(7): 1183-1199(in Chinese). [4] VOLK T, WÖHLECKE M. Lithium Niobate: defects, photorefraction and ferroelectric switching[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. [5] ASHKIN A, BOYD G D, DZIEDZIC J M, et al. Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3[J]. Applied Physics Letters, 1966, 9(1): 72-74. [6] CHEN F S, LAMACCHIA J T, FRASER D B. Holographic storage in lithium niobate[J]. Applied Physics Letters, 1968, 13(7): 223-225. [7] CHEN F S. Optically induced change of refractive indices in LiNbO3 and LiTaO3[J]. Journal of Applied Physics, 1969, 40(8): 3389-3396. [8] ZHONG G, JIAN J, WU Z. Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO[J]. Proceedings of the 11th International Quantum Electronics Conference, 1980, 70(6): 631. [9] VOLK T R, PRYALKIN V I, RUBININA N M. Optical-damage-resistant LiNbO3∶Zn crystal[J]. Optics Letters, 1990, 15(18): 996-998. [10] KONG Y F, WEN J K, WANG H F. New doped lithium niobate crystal with high resistance to photorefraction—LiNbO3∶In[J]. Applied Physics Letters, 1995, 66(3): 280-281. [11] YAMAMOTO J K, KITAMURA K, IYI N, et al. Increased optical damage resistance in Sc2O3-doped LiNbO3[J]. Applied Physics Letters, 1992, 61(18): 2156-2158. [12] KOKANYAN E P, RAZZARI L, CRISTIANI I, et al. Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals[J]. Applied Physics Letters, 2004, 84(11): 1880-1882. [13] KONG Y F, LIU S G, ZHAO Y J, et al. Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate[J]. Applied Physics Letters, 2007, 91(8): 081908. [14] 孔勇发,许京军,张光寅,等.多功能光电材料铌酸锂晶体[M].北京:科学出版社,2005. KONG Y F, XU J J, ZHANG G Y, et al. Multifunctional optoelectronic material: lithium niobate crystal[M]. Beijing: Science Press, 2005(in Chinese). [15] PHILLIPS W, AMODEI J J, STAEBLER D L. Optical and holographic storage properties of transition metal doped lithium niobate[J]. RCA Review, 1972, 33: 94-109. [16] BUSE K, ADIBI A, PSALTIS D. Non-volatile holographic storage in doubly doped lithium niobate crystals[J]. Nature, 1998, 393(6686): 665-668. [17] ZHENG D H, WANG W W, WANG S L, et al. Real-time dynamic holographic display realized by bismuth and magnesium co-doped lithium niobate[J]. Applied Physics Letters, 2019, 114(24): 241903. [18] KIP D. Photorefractive waveguides in oxide crystals: fabrication, properties, and applications[J]. Applied Physics B, 1998, 67(2): 131-150. [19] CHEN F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications[J]. Laser & Photonics Reviews, 2012, 6(5): 622-640. [20] BAZZAN M, SADA C. Optical waveguides in lithium niobate: recent developments and applications[J]. Applied Physics Reviews, 2015, 2(4): 040603. [21] TAYA M, BASHAW M C, FEJER M M, et al. Observation of dark photovoltaic spatial solitons[J]. Physical Review A, Atomic, Molecular, and Optical Physics, 1995, 52(4): 3095-3100. [22] CHEN F, STEPIĆ M, RÜTER C, et al. Discrete diffraction and spatial gap solitons in photovoltaic LiNbO3 waveguide arrays[J]. Optics Express, 2005, 13(11): 4314-4324. [23] JIANG H W, LUO R, LIANG H X, et al. Fast response of photorefraction in lithium niobate microresonators[J]. Optics Letters, 2017, 42(17): 3267-3270. [24] LU J J, SURYA J B, LIU X W, et al. Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250, 000%/W[J]. Optica, 2019, 6(12): 1455. [25] XU Y T, SAYEM A A, ZOU C L, et al. Photorefraction-induced Bragg scattering in cryogenic lithium niobate ring resonators[J]. Optics Letters, 2021, 46(2): 432-435. [26] AMODEI J J, PHILLIPS W, STAEBLER D L. Improved electrooptic materials and fixing techniques for holographic recording[J]. Applied Optics, 1972, 11(2): 390-396. [27] KUKHTAREV N V, MARKOV V B, ODULOV S G, et al. Holographic storage in electrooptic crystals. i. steady state[J]. Ferroelectrics, 1978, 22(1): 949-960. [28] 刘思敏,郭 儒,许京军.光折变非线性光学及其应用[M].北京:科学出版社,2004. LIU S M, GUO R, XU J J. Photorefractive nonlinear optics and its applications[M]. Beijing: Science Press, 2004(in Chinese). [29] VALLEY G C. Simultaneous electron/hole transport in photorefractive materials[J]. Journal of Applied Physics, 1986, 59(10): 3363-3366. [30] BROST G A, MOTES R A, ROTGE J R. Intensity-dependent absorption and photorefractive effects in barium titanate[J]. Josa B, 1988, 5(9): 1879-1885. [31] BUSE K, KRÄTZIG E. Three-valence charge-transport model for explanation of the photorefractive effect[J]. Applied Physics B, 1995, 61(1): 27-32. [32] CORNER L, DAMZEN M J. An analysis of the three-valence model of photorefraction[J]. Applied Physics B, 1999, 68(5): 819-826. [33] ADIBI A, BUSE K, PSALTIS D. Two-center holographic recording[J]. Josa B, 2001, 18(5): 584-601. [34] STAEBLER D L, AMODEI J J. Coupled-wave analysis of holographic storage in LiNbO3[J]. Journal of Applied Physics, 1972, 43(3): 1042-1049. [35] JUNGEN R, ANGELOW G, LAERI F, et al. Efficient ultraviolet photorefraction in LiNbO3[J]. Applied Physics A, 1992, 55(1): 101-103. [36] KONG Y, LIU S, XU J. Recent advances in the photorefraction of doped lithium niobate crystals[J]. Materials, 2012, 5(10): 1954-1971. [37] LIU F C, KONG Y F, LI W, et al. High resistance against ultraviolet photorefraction in zirconium-doped lithium niobate crystals[J]. Optics Letters, 2010, 35(1): 10-12. [38] XIN F F, ZHANG G Q, GE X Y, et al. Ultraviolet band edge photorefractivity in LiNbO3∶Sn crystals[J]. Optics Letters, 2011, 36(16): 3163-3165. [39] XIN F F, ZHANG G Q, BO F, et al. Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals[J]. Journal of Applied Physics, 2010, 107(3): 033113. [40] LIU H D, XIE X, KONG Y F, et al. Photorefractive properties of near-stoichiometric lithium niobate crystals doped with iron[J]. Optical Materials, 2006, 28(3): 212-215. [41] KÖSTERS M, STURMAN B, WERHEIT P, et al. Optical cleaning of congruent lithium niobate crystals[J]. Nature Photonics, 2009, 3(9): 510-513. [42] MCMILLEN D, HUDSON T, WAGNER J, et al. Holographic recording in specially doped lithium niobate crystals[J]. Optics Express, 1998, 2(12): 491-502. [43] DONG Y F, LIU S G, KONG Y F, et al. Fast photorefractive response of vanadium-doped lithium niobate in the visible region[J]. Optics Letters, 2012, 37(11): 1841-1843. [44] TIAN T, KONG Y F, LIU S G, et al. Photorefraction of molybdenum-doped lithium niobate crystals[J]. Optics Letters, 2012, 37(13): 2679-2681. [45] TIAN T, KONG Y F, LIU S G, et al. Fast UV-Vis photorefractive response of Zr and Mg codoped LiNbO3∶Mo[J]. Optics Express, 2013, 21(9): 10460-10466. [46] ZHANG G Y, XU J J, LIU S M, et al. Study of resistance against photorefractive light-induced scattering in LiNbO3∶Fe, Mg crystals[C]//SPIE’s 1995 International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 2529, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications, San Diego, CA, USA. 1995, 2529: 14-17. [47] ZHANG G Q, TOMITA Y, ZHANG X Z, et al. Near-infrared holographic recording with quasi-nonvolatile readout in LiNbO3∶In, Fe[J]. Applied Physics Letters, 2002, 81(8): 1393-1395. [48] LIU B, LI C L, BI J C, et al. Photorefractive features of non-stoichiometry codoped Hf∶Fe∶LiNbO3 single crystals[J]. Crystal Research and Technology, 2008, 43(3): 260-265. [49] KONG Y F, WU S Q, LIU S G, et al. Fast photorefractive response and high sensitivity of Zr and Fe codoped LiNbO3 crystals[J]. Applied Physics Letters, 2008, 92(25): 251107. [50] KONG Y F, LIU F C, TIAN T, et al. Fast responsive nonvolatile holographic storage in LiNbO3 triply doped with Zr, Fe, and Mn[J]. Optics Letters, 2009, 34(24): 3896-3898. [51] ZHOU Z F, WANG B, LIN S P, et al. Defect structure and nonvolatile hologram storage properties in Hf∶Fe∶Mn∶LiNbO3 crystals[J]. Optik, 2011, 122(13): 1179-1182. [52] LIU Y W, LIU L R, XU L Y, et al. Experimental study of non-volatile holographic storage in doubly- and triply-doped lithium niobate crystals[J]. Optics Communications, 2000, 181(1/2/3): 47-52. [53] LIU F C, KONG Y F, GE X Y, et al. Improved sensitivity of nonvolatile holographic storage in triply doped LiNbO3∶Zr, Cu, Ce[J]. Optics Express, 2010, 18(6): 6333-6339. [54] XU Z P, XU C, LENG X S, et al. Growth and nonvolatile holographic storage properties of Hf∶Ce∶Cu∶LiNbO3 crystals[J]. Journal of Crystal Growth, 2011, 318(1): 661-664. [55] CHIANG C H, CHEN J C, LEE Y C, et al. Photorefractive properties of Ru doped lithium niobate crystal[J]. Optical Materials, 2009, 31(6): 812-816. [56] ZHENG D H, KONG Y F, LIU S G, et al. The simultaneous enhancement of photorefraction and optical damage resistance in MgO and Bi2O3 co-doped LiNbO3 crystals[J]. Scientific Reports, 2016, 6: 20308. [57] TAY S, BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698. [58] BLANCHE P A, BABLUMIAN A, VOORAKARANAM R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 2010, 468(7320): 80-83. [59] YU H, LEE K, PARK J, et al. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields[J]. Nature Photonics, 2017, 11(3): 186-192. [60] ZHANG W L, CHENG W D, ZHANG H, et al. A strong second-harmonic generation material Cd4BiO(BO3)3 originating from 3-chromophore asymmetric structures[J]. Journal of the American Chemical Society, 2010, 132(5): 1508-1509. [61] XUE D, BETZLER K, HESSE H, et al. Origin of the large nonlinear optical coefficients in bismuth borate BiB3O6[J]. Physica Status Solidi (a), 1999, 176(2): R1-R2. [62] ZHENG D H, KONG Y F, LIU S G, et al. The photorefractive characteristics of bismuth-oxide doped lithium niobate crystals[J]. AIP Advances, 2015, 5(1): 017132. [63] LI L L, LI Y L, ZHAO X. Hybrid density functional theory insight into the stability and microscopic properties of Bi-doped LiNbO3∶lone electron pair effect[J]. Physical Review B, 2017, 96(11): 115118. [64] WANG S L, SHAN Y D, WANG W, et al. Lone-pair electron effect induced a rapid photorefractive response in site-controlled LiNbO3∶Bi,M (M=Zn, In, Zr) crystals[J]. Applied Physics Letters, 2021, 118(19): 191902. [65] WANG S L, SHAN Y D, ZHENG D H, et al. The real-time dynamic holographic display of LN∶Bi, Mg crystals and defect-related electron mobility[J]. Opto-Electronic Advances, 2020: 210135. [66] CHEN F, WANG X L, WANG K M. Development of ion-implanted optical waveguides in optical materials: a review[J]. Optical Materials, 2007, 29(11): 1523-1542. [67] ROBERTSON E E, EASON R W, YOKOO Y, et al. Photorefractive damage removal in annealed-proton-exchanged LiNbO3 channel waveguides[J]. Applied Physics Letters, 1997, 70(16): 2094-2096. [68] TAN Y, CHEN F, KIP D. Photorefractive properties of optical waveguides in Fe∶LiNbO3 crystals produced by O3+ ion implantation[J]. Applied Physics B, 2009, 94(3): 467-471. [69] TAN Y, CHEN F, WANG X L, et al. Formation of reconfigurable optical channel waveguides and beam splitters on top of proton-implanted lithium niobate crystals using spatial dark soliton-like structures[J]. Journal of Physics D: Applied Physics, 2008, 41(10): 102001. [70] TAN Y, CHEN F, STEPIĆ M, et al. Reconfigurable optical channel waveguides in lithium niobate crystals produced by combination of low-dose O3+ ion implantation and selective white light illumination[J]. Optics Express, 2008, 16(14): 10465-10470. [71] ZHANG H X, KAM C H, ZHOU Y, et al. Optical amplification by two-wave mixing in lithium niobate waveguides[C]//SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation. Proc SPIE 3801, Photorefractive Fiber and Crystal Devices: Materials, Optical Properties, and Applications V, Denver, CO, USA. 1999, 3801: 208-214. [72] BRADY D J, PSALTIS D. Holographic interconnections in photorefractive waveguides[J]. Applied Optics, 1991, 30(17): 2324-2333. [73] CHEN Z G, SEGEV M, WILSON D W, et al. Self-trapping of an optical vortex by use of the bulk photovoltaic effect[J]. Physical Review Letters, 1997, 78(15): 2948-2951. [74] KRUGLOV V G, SHANDAROV V M, TAN Y, et al. Formation of dark spatial solitons in planar ion-implanted lithium niobate waveguides[J]. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72(12): 1620-1622. [75] TAN Y, CHEN F, BELIČEV P P, et al. Gap solitons in defocusing lithium niobate binary waveguide arrays fabricated by proton implantation and selective light illumination[J]. Applied Physics B, 2009, 95(3): 531-535. [76] SMIRNOV E, RÜTER C E, STEPIĆ M, et al. Dark and bright blocker soliton interaction in defocusing waveguide arrays[J]. Optics Express, 2006, 14(23): 11248-11255. [77] SOHLER W, HU H, RICKEN R, et al. Integrated optical devices in lithium niobate[J]. Optics and Photonics News, 2008, 19(1): 24-31. [78] BOES A, CORCORAN B, CHANG L, et al. Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits[J]. Laser & Photonics Reviews, 2018, 12(4): 1700256. [79] ZHANG J H, FANG Z W, LIN J T, et al. Fabrication of crystalline microresonators of high quality factors with a controllable wedge angle on lithium niobate on insulator[J]. Nanomaterials, 2019, 9(9): 1218. [80] WANG C, ZHANG M, CHEN X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages[J]. Nature, 2018, 562(7725): 101-104. [81] YANG Z Q, WEN M X, WAN L, et al. Efficient acousto-optic modulation using a microring resonator on a thin-film lithium niobate-chalcogenide hybrid platform[J]. Optics Letters, 2022, 47(15): 3808-3811. [82] HE Y, YANG Q F, LING J W, et al. Self-starting bi-chromatic LiNbO3 soliton microcomb[J]. Optica, 2019, 6(9): 1138. [83] XU Y T, SHEN M H, LU J J, et al. Mitigating photorefractive effect in thin-film lithium niobate microring resonators[J]. Optics Express, 2021, 29(4): 5497-5504. |
[1] | 陈鸿明, 范胜琪, 宋琪, 蒋玲, 陈拥军, 李建保, 张雪艳. Ni掺杂Mo2C/C双功能催化剂的制备及其电解水性能的研究[J]. 人工晶体学报, 2025, 54(1): 158-164. |
[2] | 张宁宁, 鱼海涛, 刘艳艳, 薛丹. 4d过渡金属掺杂单层WS2的电子结构和光学性质研究[J]. 人工晶体学报, 2025, 54(1): 77-84. |
[3] | 王洪帅, 王蕾, 宋舒虹, 陶绪堂. 基于原位原子力显微镜的巴洛沙韦酯单晶溶解机制研究[J]. 人工晶体学报, 2024, 53(9): 1519-1527. |
[4] | 刘云云, 黄传鑫, 王猛, 王燕. Dy3+/Eu3+双掺杂CaLaGa3O7颜色可调荧光粉的制备与发光性能[J]. 人工晶体学报, 2024, 53(9): 1560-1567. |
[5] | 白琼宇, 王春浩. 植物补光用In3+掺杂Zn3Ga2Ge2O10∶Cr3+远红光发光材料的性能研究[J]. 人工晶体学报, 2024, 53(9): 1568-1575. |
[6] | 牛丽丽, 王培, 刘彦彬, 赵惠娟. 超级电容器用生物质衍生碳材料研究进展[J]. 人工晶体学报, 2024, 53(8): 1302-1312. |
[7] | 钟琼丽, 王绪, 马奎, 杨发顺. Al掺杂对β-Ga2O3薄膜光学性质的影响研究[J]. 人工晶体学报, 2024, 53(8): 1352-1360. |
[8] | 和志豪, 苟杰, 王云杰, 齐亚杰, 丁家福, 张博, 赵星胜, 裴翊祯, 侯姝宇, 苏欣. Zn掺杂氮化硼的电子结构与光学性质的第一性原理研究[J]. 人工晶体学报, 2024, 53(7): 1249-1256. |
[9] | 范昊, 陈拥军, 李建保, 陈帅峰, 陈庆. 利用废弃椰木制备B和N共掺杂碳微纳结构及其电磁波吸收性能[J]. 人工晶体学报, 2024, 53(7): 1269-1279. |
[10] | 李玉琦, 徐英, 梁士明. 氧化铟基气敏材料的研究进展[J]. 人工晶体学报, 2024, 53(6): 930-946. |
[11] | 胡正开, 杨伟斌, 熊飞兵, 郭益升, 白鑫, 李明明. Sm3+掺杂Na5Y(MoO4)4-y(WO4)y高热稳定性荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2024, 53(6): 1016-1025. |
[12] | 祁君, 李嘉乐, 胡珊, 于小凤, 廖薇星, 黄世文, 徐秀泉. 纳米Ag修饰S掺杂g-C3N4的制备及其光催化抗菌性能[J]. 人工晶体学报, 2024, 53(6): 1034-1041. |
[13] | 汪涛, 张于浩, 殷海荣. 基于密度泛函理论的NaTaO3的结构设计及光催化抗菌性能研究[J]. 人工晶体学报, 2024, 53(6): 1051-1060. |
[14] | 程佳辉, 杨磊, 王劲楠, 龚春生, 张泽盛, 简基康. 重掺杂P型SiC的熔融KOH刻蚀行为研究[J]. 人工晶体学报, 2024, 53(5): 773-780. |
[15] | 苗健, 邵辉, 曹瑞龙. K0.5Na0.5NbO3掺杂对0.94Bi0.5Na0.5TiO3-0.06BaTiO3陶瓷储能性能的影响[J]. 人工晶体学报, 2024, 53(5): 882-888. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||
全文 338
|
|
|||||||||||||||||||||||||||||||||||||||||||||
摘要 |
|
|||||||||||||||||||||||||||||||||||||||||||||