人工晶体学报 ›› 2022, Vol. 51 ›› Issue (9-10): 1643-1658.
刘杨彬, 李谦, 肖若愚, 徐卓, 李飞
收稿日期:
2022-08-30
出版日期:
2022-10-15
发布日期:
2022-11-02
通信作者:
徐 卓,博士,教授。E-mail:xuzhuo@xjtu.edu.cn作者简介:
刘杨彬(1991—),男,陕西省人,博士研究生。E-mail:liu252573944@gmail.com。基金资助:
LIU Yangbin, LI Qian, XIAO Ruoyu, XU Zhuo, LI Fei
Received:
2022-08-30
Online:
2022-10-15
Published:
2022-11-02
摘要: 钙钛矿型(ABO3)弛豫铁电单晶具有优异的机电耦合性能,被认为是研制下一代医疗超声换能器、高精度压电驱动器、水声换能器等机电耦合器件的核心关键材料。针对弛豫铁电单晶材料制备与物理性能方面尚存在的基础科学与工艺问题,本文综述了近些年弛豫铁电单晶生长与性能优化方面的研究进展,包括若干新的单晶生长方法用以改善弛豫铁电单晶的成分和性能均匀性,提升弛豫铁电单晶压电性能的系列新方法,通过铁电畴结构调控以获得高透光率的弛豫铁电单晶,以及高性能弛豫铁电单晶在电光技术领域的应用等。
中图分类号:
刘杨彬, 李谦, 肖若愚, 徐卓, 李飞. 弛豫铁电单晶的生长及性能优化研究进展[J]. 人工晶体学报, 2022, 51(9-10): 1643-1658.
LIU Yangbin, LI Qian, XIAO Ruoyu, XU Zhuo, LI Fei. Research Progress on the Growth and Property Optimization of Relaxor Ferroelectric Single Crystals[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(9-10): 1643-1658.
[1] ZHANG Z, XU J L, YANG L L, et al. Design and comparison of PMN-PT single crystals and PZT ceramics based medical phased array ultrasonic transducer[J]. Sensors and Actuators A: Physical, 2018, 283: 273-281. [2] 莫喜平.第三讲 让声纳系统耳目一新:新型水声换能器与换能器新技术[J].物理,2006,35(5):414-419. MO X P. Innovations for sonar: new technology and designs for underwater acoustic transducers[J]. Physics, 2006, 35(5): 414-419(in Chinese). [3] PENG C, WU H Y, KIM S, et al. Recent advances in transducers for intravascular ultrasound (IVUS) imaging[J]. Sensors, 2021, 21(10): 3540. [4] HUANG Y, ZHANG S J, WANG P H, et al. Hi-fi stake piezo single crystal actuator[J]. Actuators, 2018, 7(3): 60. [5] BAASANDORJ L, CHEN Z B. Recent developments on relaxor-PbTiO3 ferroelectric crystals[J]. Crystals, 2021, 12(1): 56. [6] ZHANG S J, LI F, JIANG X N, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers-A review[J]. Progress in Materials Science, 2015, 68: 1-66. [7] SONG K X, LI Q, GUO H S, et al. Composition and electrical properties characterization of a 5” diameter PIN-PMN-PT single crystal by the modified Bridgman method[J]. Journal of Alloys and Compounds, 2021, 851: 156145. [8] FAN H Q, ZHAO L L, TANG B, et al. Growth and characterization of PMNT relaxor-based ferroelectric single crystals by flux method[J]. Materials Science and Engineering: B, 2003, 99(1/2/3): 183-186. [9] MATSUSHITATA M, ECHIZENYA K. Continuous feeding growth of ternary PIN-PMN-PT single crystals[C]. IEEE, 2014. [10] ECHIZENYA K, MATSUSHITA M. Continuous feed growth and characterization of PMN-PT single crystals[C]//2011 IEEE International Ultrasonics Symposium. Orlando, FL, USA. IEEE,: 1813-1816. [11] ECHIZENYA K, NAKAMURA K, MIZUNO K. PMN-PT and PIN-PMN-PT single crystals grown by continuous-feeding Bridgman method[J]. Journal of Crystal Growth, 2020, 531: 125364. [12] KANG S J L, PARK J H, KO S Y, et al. Solid-state conversion of single crystals: the principle and the state-of-the-art[J]. Journal of the American Ceramic Society, 2015, 98(2): 347-360. [13] 江民红,倪双阳,姚小玉,等.固相晶体生长技术的发展:从籽晶诱导到无籽晶生长[J].人工晶体学报,2020,49(6):965-978. JIANG M H, NI S Y, YAO X Y, et al. Development of solid-state crystal growth technology: from seed-induced to seed-free growth[J]. Journal of Synthetic Crystals, 2020, 49(6): 965-978(in Chinese). [14] KIM Y M, LEE S H, LEE H Y, et al. Measurement of all the material properties of PMN-PT single crystals grown by the solid-state-crystal-growth (SSCG) method[C]//IEEE Symposium on Ultrasonics. Honolulu, HI, USA. IEEE,: 1987-1990. [15] ZHANG S J, LEE S M, KIM D H, et al. Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 single crystals for high power broad bandwidth transducers[J]. Applied Physics Letters, 2008, 93(12): 122908. [16] Ceracomp Company Ltd.Ceracomp-PMNT PSC Brochure [EB/OL].[2015-09-21]. http://www.ceracomp.com/. [17] ZAWILSKI K T, DEMATTEI R C, FEIGELSON R S. Zone leveling of lead magnesium niobate-lead titanate crystals using RF heating[J]. Journal of Crystal Growth, 2005, 277(1/2/3/4): 393-400. [18] LUO J, ZHANG S J, SHROUT T R, et al. Advances in manufacturing relaxor piezoelectric single crystals[C]//2007 Sixteenth IEEE International Symposium on the Applications of Ferroelectrics. Nara, Japan. IEEE: 557-560. [19] LI F, CABRAL M J, XU B, et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Science, 2019, 364(6437): 264-268. [20] LEE H Y, ZHANG S J, SHROUT T R. Development of high TC PMN-PZT piezoelectric single crystals by the solid-state crystal growth (SSCG) technique[C]//2008 17th IEEE International Symposium on the Applications of Ferroelectrics. Santa Re, NM, USA. IEEE,: 1-2. [21] CHEN H B, LIANG Z, LUO L H, et al. Bridgman growth, crystallographic characterization and electrical properties of relaxor-based ferroelectric single crystal PIMNT[J]. Journal of Alloys and Compounds, 2012, 518: 63-67. [22] CHEN J W, LI X B, ZHAO X Y, et al. Compositional segregation, structural transformation and property-temperature relationship of high-Curie temperature Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Journal of Materials Science: Materials in Electronics, 2015, 26(12): 9316-9328. [23] SRIMATHY B, KUMAR J. Effect of donor dopants on the properties of flux grown PZN-PT single crystals[J].Applied Physics A, 2021, 127(6): 1-7. [24] LI F, LIN D B, CHEN Z B, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design[J]. Nature Materials, 2018, 17(4): 349-354. [25] OH H T, JOO H J, KIM M C, et al. Effect of Mn on dielectric and piezoelectric properties of 71PMN-29PT[71Pb(Mg1/3Nb2/3)O3-29PbTiO3]single crystals and polycrystalline ceramics[J]. Journal of the Korean Ceramic Society, 2018, 55(2): 166-173. [26] XIONG J J, WANG Z J, YANG X M, et al. Improvement of temperature-stability and piezoelectric performance of Pb(In0.5Nb0.5)O3-PbTiO3 crystals via Nd doping[J]. Ceramics International, 2021, 47(14): 19575-19581. [27] LI C C, XU B, LIN D B, et al. Atomic-scale origin of ultrahigh piezoelectricity in samarium-doped PMN-PT ceramics[J]. Physical Review B, 2020, 101(14): 140102. [28] LI Q, LIU Y B, LIU J F, et al. Enhanced piezoelectric properties and improved property uniformity in Nd-doped PMN-PT relaxor ferroelectric single crystals[J]. Advanced Functional Materials, 2022, 32(25): 2201719. [29] XIONG J J, WANG Y Q, YANG X M, et al. Significant performance enhancement of Nd-doped Pb(In0.5Nb0.5)O3-PbTiO3 ferroelectric crystals[J]. CrystEngComm, 2022, 24(24): 4341-4345. [30] 李 飞,张树君,李振荣,等.弛豫铁电单晶的研究进展—压电效应的起源研究[J].物理学进展,2012,32(4):178-198. LI F, ZHANG S J, LI Z R, et al. Recent development on relaxor-PbTiO3 single crystals: the origin of high piezoelectric response[J]. Progress in Physics, 2012, 32(4): 178-198(in Chinese). [31] WADA S, YAKO K, KAKEMOTO H, et al. Enhanced piezoelectric property of BaTiO3 single crystals with the different domain sizes[J]. Key Engineering Materials, 2004, 269: 19-22. [32] WADA S, YAKO K, KAKEMOTO H, et al. Enhanced piezoelectric properties of barium titanate single crystals with different engineered-domain sizes[J]. Journal of Applied Physics, 2005, 98(1): 014109. [33] BELL A J, SHEPLEY P M, LI Y. Domain wall contributions to piezoelectricity in relaxor-lead titanate single crystals[J]. Acta Materialia, 2020, 195: 292-303. [34] RAO W F, WANG Y U. Bridging domain mechanism for phase coexistence in morphotropic phase boundary ferroelectrics[J]. Applied Physics Letters, 2007, 90(18): 182906. [35] SLUKA T, TAGANTSEV A K, DAMJANOVIC D, et al. Enhanced electromechanical response of ferroelectrics due to charged domain walls[J]. Nature Communications, 2012, 3: 748. [36] ONDREJKOVIC P, MARTON P, GUENNOU M, et al. Piezoelectric properties of twinned ferroelectric perovskites with head-to-head and tail-to-tail domain walls[J]. Physical Review B, 2013, 88(2): 024114. [37] WANG B, LI F, CHEN L Q. Inverse domain-size dependence of piezoelectricity in ferroelectric crystals[J]. Advanced Materials, 2021, 33(51): e2105071. [38] LI F, WANG L H, JIN L, et al. Achieving single domain relaxor-PT crystals by high temperature poling[J]. CrystEngComm, 2014, 16(14): 2892-2897. [39] XIONG J J, WANG Z J, YANG X M, et al. Performance enhancement of Pb(In1/2Nb1/2)O3-PbTiO3 ferroelectric single crystals using pulse poling[J]. Scripta Materialia, 2022, 215: 114694. [40] YAMASHITA Y. Piezoelectric transducer, ultrasonic probe, and piezoelectric transducer manufacturing method: USA, 20150372219[Z]. 2015. [41] QIU C R, WANG B, ZHANG N, et al. Transparent ferroelectric crystals with ultrahigh piezoelectricity[J]. Nature, 2020, 577(7790): 350-354. [42] QIU C R, XU Z, AN Z Y, et al. In-situ domain structure characterization of Pb(Mg1/3Nb2/3)O3-PbTiO3 crystals under alternating current electric field poling[J]. Acta Materialia, 2021, 210: 116853. [43] WAN H T, LUO C T, LIU C, et al. Alternating current poling on sliver-mode rhombohedral Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals[J]. Acta Materialia, 2021, 208: 116759. [44] XU J L, DENG H, ZENG Z, et al. Piezoelectric performance enhancement of Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 crystals by alternating current polarization for ultrasonic transducer[J]. Applied Physics Letters, 2018, 112(18): 182901. [45] CHANG W Y, CHUNG C C, LUO C T, et al. Dielectric and piezoelectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystal poled using alternating current[J]. Materials Research Letters, 2018, 6(10): 537-544. [46] WAN H T, LUO C T, CHANG W Y, et al. Effect of poling temperature on piezoelectric and dielectric properties of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals under alternating current poling[J]. Applied Physics Letters, 2019, 114(17): 172901. [47] LUO C T, WAN H T, CHANG W Y, et al. Effect of low-frequency alternating current poling on 5-mm-thick 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals [J]. Applied Physics Letters, 2019, 115(26): 269901. [48] WAN H T, LUO C T, CHUNG C C, et al. Enhanced dielectric and piezoelectric properties of Manganese-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals by alternating current poling[J]. Applied Physics Letters, 2021, 118(10): 102904. [49] QIU C R, LIU J F, LI F, et al. Thickness dependence of dielectric and piezoelectric properties for alternating current electric-field-poled relaxor-PbTiO3 crystals[J]. Journal of Applied Physics, 2019, 125(1): 014102. [50] MA M, XIA S, SONG K X, et al. Enhanced dielectric and piezoelectric properties in the[001]-poled 0.25Pb(In1/2Nb1/2)O3-0.43Pb(Mg1/3Nb2/3)O3-0.32PbTiO3 single crystal near morphotropic phase boundary by alternating current treatment[J]. Journal of Applied Physics, 2020, 127(6): 064106. [51] LIU J F, QIU C R, QIAO L, et al. Impact of alternating current electric field poling on piezoelectric and dielectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystals[J]. Journal of Applied Physics, 2020, 128(9): 94104. [52] ZHAO K, ZHENG M P, YAN X D, et al. Effect of direct current and alternating current poling on the piezoelectric properties of Ba0.85Ca0.15Ti0.9Zr0.1O3 ceramics[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(23): 27815-27822. [53] EIMERL D. Electro-optic, linear, and nonlinear optical properties of KDP and its isomorphs[J]. Ferroelectrics, 1987, 72(1): 95-139. [54] WEN X H, QI Y, MENG X Y. DFT study on the clamped linear electro-optic effect in KH2PO4[C]//Proceedings of 2011 International Conference on Electronics and Optoelectronics. Dalian, China. IEEE: V4-53. [55] MASHKOVICH E A, SHUGUROV A I, OZAWA S, et al. Noncollinear electro-optic sampling of terahertz waves in a thick GaAs crystal[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(5): 732-736. [56] ZENG R, ZHUANG C J, NIU B, et al. Measurement of transient electric fields in air gap discharge with an integrated electro-optic sensor[J]. IEEE Transactions on Plasma Science, 2013, 41(4): 955-960. [57] 罗豪甦,焦 杰,陈 瑞,等.弛豫铁电单晶的多功能特性及其器件应用[J].人工晶体学报,2021,50(5):783-802. LUO H S, JIAO J, CHEN R, et al. Multifunctional properties and device applications of the relaxor ferroelectric single crystals[J]. Journal of Synthetic Crystals, 2021, 50(5): 783-802(in Chinese). [58] 王继扬,黄林勇,覃方丽,等.电光晶体研究进展及其对称性究[J].物理学进展,2012,32(1):33-56. WANG J Y, HUANG L Y, QIN F L, et al. Progress of the electro-optic crystal research and the symmetry dependence of electro-optic effect[J]. Progress in Physics, 2012, 32(1): 33-56(in Chinese). [59] SMOLENSKII G A, BEREZHNOI A A, KRAINIK N N, et al. Electro-optical properties of perovskite-type ferroelectric crystals of complex composition[J]. Bulletin of the Academy of Sciences of the USSR. 1969, 33(2): 258-260. [60] SMOLENSKII G A, BEREZHNOI A A, PISAREV R V, et al. Anomalous dispersion of the electro-optical effect in ferroelectric PbNi1/2Nb2/3O3[J]. Fizika Tverdogo Tela. 1969, 11(5): 1120-1123. [61] LU Y, CHENG Z Y, PARK S E, et al. Linear electro-optic effect of 0.88Pb(Zn1/3Nb2/3)O3-0.12PbTiO3 single crystal[J]. Japanese Journal of Applied Physics, 2000, 39(Part 1, No. 1): 141-145. [62] LU Y, CHENG Z Y, BARAD Y, et al. Photoelastic effects in tetragonal Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals near the morphotropic phase boundary[J]. Journal of Applied Physics, 2001, 89(9): 5075-5078. [63] BARAD Y, LU Y, CHENG Z Y, et al. Composition, temperature, and crystal orientation dependence of the linear electro-optic properties of Pb(Zn1/3Nb2/3)O3-PbTiO3 single crystals[J]. Applied Physics Letters, 2000, 77(9): 1247-1249. [64] WAN X M, CHAN H L W, CHOY C L, et al. Optical properties of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals studied by spectroscopic ellipsometry[J]. Journal of Applied Physics, 2004, 96(3): 1387-1391. [65] WAN X M, LUO H S, WANG J, et al. Investigation on optical transmission spectra of (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals[J]. Solid State Communications, 2004, 129(6): 401-405. [66] HE C J, ZHOU Z X, LIU D J, et al. Photorefractive effect in relaxor ferroelectric 0.62Pb(Mg1/3Nb2/3)O3-0.38PbTiO3 single crystal[J]. Applied Physics Letters, 2006, 89(26): 261111. [67] HE C J, TANG Y X, ZHAO X Y, et al. Optical dispersion properties of tetragonal relaxor ferroelectric single crystals 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3[J]. Optical Materials, 2007, 29(8): 1055-1057. [68] WU F M, YANG B, SUN E W, et al. Optical properties and dispersions of rhombohedral 0.24Pb(In1/2Nb1/2)O3-0.49Pb(Mg1/3Nb2/3)O3-0.27PbTiO3 single domain single crystal[J]. Optical Materials, 2013, 36(2): 342-345. [69] LIU X, TAN P, MA X, et al. Ferroelectric crystals with giant electro-optic property enabling ultracompact Q-switches[J]. Science, 2022, 376(6591): 371-377. |
[1] | 陈金润, 陈梦玉, 李子璇, 李微, 楚楚, 曹秀哲, 翟永清. NaCa2Mg2(VO4)3∶Eu3+颜色可调荧光粉的熔盐法合成及其发光性能研究[J]. 人工晶体学报, 2024, 53(1): 90-96. |
[2] | 孟晓燕, 廖云, 张丽蓉, 张雨蒙, 吴丽丹, 杨流赛. GdPO4∶Tb3+荧光粉的制备及发光性能研究[J]. 人工晶体学报, 2024, 53(1): 107-114. |
[3] | 宿世超, 赵晓霞, 田宏波, 王伟, 宗军. 高效背结异质结太阳电池硼掺杂非晶硅发射极研究[J]. 人工晶体学报, 2024, 53(1): 132-137. |
[4] | 刘辉, 闫共芹, 蓝春波, 张子杨. Cu掺杂P2型Na0.67Ni0.33Mn0.67O2钠离子电池正极材料的制备与性能[J]. 人工晶体学报, 2024, 53(1): 145-153. |
[5] | 肖齐龙, 王世宇, 蒋芮, 梅雄峰, 吴昊, 石亚军, 孙帅, 吴文娟. ZnNb2O6掺杂BNT基无铅弛豫铁电体陶瓷的性能研究[J]. 人工晶体学报, 2024, 53(1): 154-162. |
[6] | 王京康, 王承二, 孙希磊, 王治华, 李云云, 李焕英, 任国浩, 吴云涛. Li掺杂浓度对NaI∶Tl,Li晶体光学和闪烁性能的影响[J]. 人工晶体学报, 2023, 52(9): 1582-1588. |
[7] | 南博洋, 洪瑞金, 陶春先, 王琦, 林辉, 韩朝霞, 张大伟. 基于金属锡掺杂浓度变化的光学性能可调谐ITO薄膜制备研究[J]. 人工晶体学报, 2023, 52(9): 1617-1623. |
[8] | 欧鑫林, 王进, 赵可. Er掺杂MnBi2Te4晶体生长及其微结构研究[J]. 人工晶体学报, 2023, 52(9): 1635-1640. |
[9] | 高妍, 董海涛, 张小可, 冯文然. (AlxGa1-x)2O3结构、电子和光学性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(9): 1674-1680. |
[10] | 高鹏, 张艳平, 王敏, 余婉菲, 李建保. 高效Mo-Ni5P4双功能电催化剂的制备及其电解水性能研究[J]. 人工晶体学报, 2023, 52(9): 1691-1697. |
[11] | 张艳平, 高鹏, 李建保, 王敏, 万伟敏, 陈拥军. Ru掺杂Ni3N催化剂的电催化析氢反应[J]. 人工晶体学报, 2023, 52(9): 1698-1706. |
[12] | 陈绍华, 穆文祥, 张晋, 董旭阳, 李阳, 贾志泰, 陶绪堂. Ni掺杂β-Ga2O3单晶的光、电特性研究[J]. 人工晶体学报, 2023, 52(8): 1373-1377. |
[13] | 张榕贵, 陈腾波, 李来超, 李玉虎, 马艳丽. Dy、Lu掺杂对TSAG晶体磁光特性影响研究[J]. 人工晶体学报, 2023, 52(8): 1407-1412. |
[14] | 张依擎, 梁俊辉, 范浩阳, 陈达, 陈华予, 黄岳祥, 姚鑫, 秦来顺. 高价态W掺杂对NiFe磷化物全分解水制氢催化活性影响的研究[J]. 人工晶体学报, 2023, 52(8): 1491-1499. |
[15] | 马春林, 王梓珩, 范雨香, 胡颖, 胡亚洲. Sm3+掺杂0.96Na0.5Bi0.5TiO3-0.04CaTiO3陶瓷的制备及光致发光性能研究[J]. 人工晶体学报, 2023, 52(8): 1509-1515. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||