[1] BOCK M, LENHARD A, CHUNNILALL C, et al. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide[J]. Optics Express, 2016, 24(21): 23992-24001. [2] IMESHEV G, ARBORE M A, KASRIEL S, et al. Pulse shaping and compression by second-harmonic generation with quasi-phase-matching gratings in the presence of arbitrary dispersion[J]. Josa B, 2000, 17(8): 1420-1437. [3] LANGROCK C, DIAMANTI E, ROUSSEV R V, et al. Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3 waveguides[J]. Optics Letters, 2005, 30(13): 1725-1727. [4] NISHIDA Y, MIYAZAWA H, ASOBE M, et al. 0-dB wavelength conversion using direct-bonded QPM-Zn∶LiNbO3 ridge waveguide[J]. IEEE Photonics Technology Letters, 2005, 17(5): 1049-1051. [5] TANZILLI S, TITTEL W, DE RIEDMATTEN H, et al. PPLN waveguide for quantum communication[J]. The European Physical Journal D - Atomic, Molecular and Optical Physics, 2002, 18(2): 155-160. [6] 叶 荣,张 彬,李恪宇.利用群速度匹配的级联二阶非线性实现超短激光脉冲压缩[J].物理学报,2013,62(9):094212. YE R, ZHANG B, LI K Y. Ultra-short laser pulse compression by using the group-velocity-matched cascaded quadratic nonlinearity[J]. Acta Physica Sinica, 2013, 62(9): 094212(in Chinese). [7] SABOURI S G, KHORSANDI A. Engineered aperiodically poled nonlinear crystal for high-power second-harmonic generation[J]. Josa B, 2016, 33(12): 2493-2501. [8] CHOGE D, CHEN H X, XU Y B, et al. Blue and orange two-color CW laser based on single-pass second-harmonic and sum-frequency generation in MgO∶PPLN[J]. Applied Sciences, 2018, 8(4): 629. [9] CHOGE D K, CHEN H X, GUO L, et al. Double-pass high-efficiency sum-frequency generation of a broadband orange laser in a single MgO∶PPLN crystal[J]. Optical Materials Express, 2019, 9(2): 837. [10] CHOGE D K, CHEN H X, GUO L, et al. High power broadband orange laser by double-pass sum-frequency mixing in MgO∶PPLN[J]. Laser Physics Letters, 2019, 16(2): 025402. [11] ZENG X L, ASHIHARA S, WANG Z J, et al. Excitation of two-colored temporal solitons in a segmented quasi-phase-matching structure[J]. Optics Express, 2009, 17(19): 16877-16884. [12] CHOGE D K, CHEN H X, XU Y B, et al. Broadening of the sum-frequency phase-matching bandwidth by temperature gradient in MgO∶PPLN[J]. Applied Optics, 2018, 57(19): 5459-5463. [13] GUO W, CHEN H X, ZHANG X B, et al. Broadband second-harmonic generation in a tapered PPLN waveguide[J]. Optoelectronics Letters, 2020, 16(4): 252-255. [14] DRISCOLL J B, OPHIR N, GROTE R R, et al. Width-modulation of Si photonic wires for quasi-phase-matching of four-wave-mixing: experimental and theoretical demonstration[J]. Optics Express, 2012, 20(8): 9227-9242. [15] XIONG X, ZOU C L, GUO X, et al. Broadband frequency conversion and “area law” in tapered waveguides[J]. OSA Continuum, 2018, 1(4): 1349. [16] KIM B M, SON H W, CHO Y K, et al. Transmission-line analysis of an epsilon near zero tunneling circuit using a double ridge rectangular waveguide[J]. Journal of the Korean Physical Society, 2014, 65(5): 625-630. [17] DWARI S, CHAKRABORTY A, SANYAL S. Analysis of linear tapered waveguide by two approaches[J]. Progress in Electromagnetics Research, 2006, 64: 219-238. [18] MU J W, HUANG W P. Complex coupled-mode theory for tapered optical waveguides[J]. Optics Letters, 2011, 36(6): 1026-1028. [19] CHUNG Y, DAGLI N. An assessment of finite difference beam propagation method[J]. IEEE Journal of Quantum Electronics, 1990, 26(8): 1335-1339. [20] MAKINO S, SATO T, ISHIZAKA Y, et al. Three-dimensional finite-element time-domain beam propagation method and its application to 1-D photonic crystal-coupled resonator optical waveguide[J]. Journal of Lightwave Technology, 2015, 33(18): 3836-3842. |