[1] LIAO G X, LUAN C C, WANG Z W, et al. Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications[J]. Advanced Materials Technologies, 2021, 6(5): 2000787. [2] RADOSZ J. Acoustic performance of noise barrier based on sonic crystals with resonant elements[J]. Applied Acoustics, 2019, 155: 492-499. [3] NORRIS A N, WICKHAM G. Elastic Helmholtz resonators[J]. The Journal of the Acoustical Society of America, 1993, 93(2): 617-630. [4] SUGIMOTO N, HORIOKA T. Dispersion characteristics of sound waves in a tunnel with an array of Helmholtz resonators[J]. The Journal of the Acoustical Society of America, 1995, 97(3): 1446-1459. [5] HU X H, CHAN C T, ZI J. Two-dimensional sonic crystals with Helmholtz resonators[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2005, 71(5 Pt 2): 055601. [6] HIRSEKORN M, DELSANTO P P, BATRA N K, et al. Modelling and simulation of acoustic wave propagation in locally resonant sonic materials[J]. Ultrasonics, 2004, 42(1/2/3/4/5/6/7/8/9): 231-235. [7] MURRAY A R J, SUMMERS I R, SAMBLES J R, et al. An acoustic double fishnet using Helmholtz resonators[J]. The Journal of the Acoustical Society of America, 2014, 136(3): 980. [8] WANG Y, ZHU X, ZHANG T S, et al. A renewable low-frequency acoustic energy harvesting noise barrier for high-speed railways using a Helmholtz resonator and a PVDF film[J]. Applied Energy, 2018, 230: 52-61. [9] 高东宝,刘选俊,田章福,等.一种基于二维Helmholtz腔阵列的低频宽带隔声结构实验研究[J].物理学报,2017,66(1):014307. GAO D B, LIU X J, TIAN Z F, et al. A broadband low-frequency sound insulation structure based on two-dimensionally inbuilt Helmholtz resonator[J]. Acta Physica Sinica, 2017, 66(1): 014307(in Chinese). [10] 倪安辰.结合共振—吸声机理的高速公路声子晶体型声屏障降噪性能研究[D].北京:北京交通大学,2021. NI A C. Noise reduction performance of highway sonic crystal noise barrier with resonance-sound absorption mechanism[D]. Beijing: Beijing Jiaotong University, 2021(in Chinese). [11] GUAN D, ZHAO D, REN Z X. Aeroacoustic attenuation performance of a Helmholtz resonator with a rigid baffle implemented in the presence of a grazing flow[J]. International Journal of Aerospace Engineering, 2020, 2020: 1916239. [12] 陈 鑫,姚 宏,赵静波,等.Helmholtz腔与弹性振子耦合结构带隙[J].物理学报,2019,68(8):084302. CHEN X, YAO H, ZHAO J B, et al. Band gap of structure coupling Helmholtz resonator with elastic oscillator[J]. Acta Physica Sinica, 2019, 68(8): 084302(in Chinese). [13] 姜久龙,姚 宏,杜 军,等.双开口Helmholtz局域共振周期结构低频带隙特性研究[J].物理学报,2017,66(6):136-142. JIANG J L, YAO H, DU J, et al. Low frequency band gap characteristics of double-split Helmholtz locally resonant periodic structures[J]. Acta Physica Sinica, 2017, 66(6): 136-142(in Chinese). [14] JING L, WU J H, GUAN D, et al. Multilayer-split-tube resonators with low-frequency band gaps in phononic crystals[J]. Journal of Applied Physics, 2014, 116(10): 103514. [15] 韩东海,张广军,赵静波,等.新型Helmholtz型声子晶体的低频带隙及隔声特性[J].物理学报,2022,71(11):215-223. HAN D H, ZHANG G J, ZHAO J B, et al. Low-frequency bandgaps and sound isolation characteristics of a novel Helmholtz-type phononic crystal[J]. Acta Physica Sinica, 2022, 71(11): 215-223(in Chinese). [16] ELFORD D P, CHALMERS L, KUSMARTSEV F V, et al. Matryoshka locally resonant sonic crystal[J]. The Journal of the Acoustical Society of America, 2011, 130(5): 2746-2755. [17] CAVALIERI T, CEBRECOS A, GROBY J P, et al. Three-dimensional multiresonant lossy sonic crystal for broadband acoustic attenuation: application to train noise reduction[J]. Applied Acoustics, 2019, 146: 1-8. [18] 康太凤,孙小伟,宋 婷,等.二维空心散射体声子晶体板的低频带隙特性及其形成机理[J].声学学报,2020,45(4):601-608. KANG T F, SUN X W, SONG T, et al. Low-frequency band gap characteristics of two-dimensional hollow scatterer phonon crystal plate and its formation mechanism[J]. Acta Acustica, 2020, 45(4): 601-608(in Chinese). [19] YU K P, CHEN T N, WANG X P. Large band gaps in two-dimensional phononic crystals with neck structures[J]. Journal of Applied Physics, 2013, 113(13): 134901. |