[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Two-dimensional gas of massless Dirac fermions in graphene[J]. Nature, 2005, 438(7065): 197-200. [2] HASHIMOTO A, SUENAGA K, GLOTER A, et al. Direct evidence for atomic defects in graphene layers[J]. Nature, 2004, 430(7002): 870-873. [3] SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655. [4] MAS-BALLESTÉ R, GÓMEZ-NAVARRO C, GÓMEZ-HERRERO J, et al. 2D materials: to graphene and beyond[J]. Nanoscale, 2011, 3(1): 20-30. [5] GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126. [6] NOVOSELOV K S. Discovery of 2D van der Waals layered MoSi2N4 family[J]. National Science Review, 2020, 7(12): 1842-1844. [7] CARVALHO A, WANG M, ZHU X, et al. Phosphorene: from theory to applications[J]. Nature Reviews Materials, 2016, 1: 16061. [8] LIU H S, GAO J F, ZHAO J J. Silicene on substrates: a way to preserve or tune its electronic properties[J]. The Journal of Physical Chemistry C, 2013, 117(20): 10353-10359. [9] KALONI T P, SINGH N, SCHWINGENSCHLÖGL U. Prediction of a quantum anomalous Hall state in Co-decorated silicene[J]. Physical Review B, 2014, 89(3): 035409. [10] CHEGEL R, BEHZAD S. Tunable electronic, optical, and thermal properties of two- dimensional germanene via an external electric field[J]. Scientific Reports, 2020, 10: 704. [11] MANZELI S, OVCHINNIKOV D, PASQUIER D, et al. 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2: 17033. [12] CASTRO NETO A H. Charge density wave, superconductivity, and anomalous metallic behavior in 2D transition metal dichalcogenides[J]. Physical Review Letters, 2001, 86(19): 4382-4385. [13] HOFMANN M, SHIN Y C, HSIEH Y P, et al. A facile tool for the characterization of two-dimensional materials grown by chemical vapor deposition[J]. Nano Research, 2012, 5(7): 504-511. [14] ZHANG J, TAN B Y, ZHANG X, et al. Atomically thin hexagonal boron nitride and its heterostructures[J]. Advanced Materials (Deerfield Beach, Fla), 2021, 33(6): e2000769. [15] RIIS-JENSEN A C, DEILMANN T, OLSEN T, et al. Classifying the electronic and optical properties of Janus monolayers[J]. ACS Nano, 2019, 13(11): 13354-13364. [16] HUANG B, CLARK G, NAVARRO-MORATALLA E, et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit[J]. Nature, 2017, 546(7657): 270-273. [17] GONG C, LI L, LI Z L, et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals[J]. Nature, 2017, 546(7657): 265-269. [18] LI H, LU G, WANG Y L, et al. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2[J]. Small (Weinheim an Der Bergstrasse, Germany), 2013, 9(11): 1974-1981. [19] FENG Q L, MAO N N, WU J X, et al. Growth of MoS2(1-x)Se2x (x=0.41-1.00) monolayer alloys with controlled morphology by physical vapor deposition[J]. ACS Nano, 2015, 9(7): 7450-7455. [20] FENG X, TANG Q, ZHOU J, et al. Novel mixed-solvothermal synthesis of MoS2 nanosheets with controllable morphologies[J]. Crystal Research and Technology, 2013, 48(6): 363-368. [21] FERT A, REYREN N, CROS V. Magnetic skyrmions: advances in physics and potential applications[J]. Nature Reviews Materials, 2017, 2: 17031. [22] SAMPAIO J, CROS V, ROHART S, et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures[J]. Nature Nanotechnology, 2013, 8(11): 839-844. [23] LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749. [24] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717-2744. [25] KRESSE G, HAFNER J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium[J]. Physical Review B, Condensed Matter, 1994, 49(20): 14251-14269. [26] BLÖCHL. Projector augmented-wave method[J]. Physical Review B, Condensed Matter, 1994, 50(24): 17953-17979. [27] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868. [28] LIECHTENSTEIN A I, ANISIMOV VI V I, ZAANEN J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators[J]. Physical Review B, Condensed Matter, 1995, 52(8): R5467-R5470. [29] TANG C, ZHANG L, DU A J. Tunable magnetic anisotropy in 2D magnets via molecular adsorption[J]. Journal of Materials Chemistry C, 2020, 8(42): 14948-14953. [30] CUI Q R, LIANG J H, SHAO Z J, et al. Strain-tunable ferromagnetism and chiral spin textures in two-dimensional Janus chromium dichalcogenides[J]. Physical Review B, 2020, 102(9): 094425. [31] CHEN S B, HUANG C X, SUN H S, et al. Boosting the Curie temperature of two-dimensional semiconducting CrI3 monolayer through van der waals heterostructures[J]. The Journal of Physical Chemistry C, 2019, 123(29): 17987-17993. [32] JI S L, WU H, ZHOU S, et al. Enhancement of curie temperature under built-in electric field in multi-functional Janus vanadium dichalcogenides[J]. Chinese Physics Letters, 2020, 37(8): 172-180. [33] GAJDOš M, HUMMER K, KRESSE G, et al. Linear optical properties in the projector-augmented wave methodology[J]. Physical Review B, 2006, 73(4): 045112. [34] ZHU J F, LIU Q H, LIN T. Manipulating light absorption of graphene using plasmonic nanoparticles[J]. Nanoscale, 2013, 5(17): 7785-7789. |