[1] MAO Y B, PARK T J, WONG S S. Synthesis of classes of ternary metal oxide nanostructures[J]. Chemical Communications, 2005(46): 5721. [2] MODESHIA D R, WALTON R I. Solvothermal synthesis of perovskites and pyrochlores: crystallisation of functional oxides under mild conditions[J]. Chemical Society Reviews, 2010, 39(11): 4303-4325. [3] AMEER S, JINDAL K, TOMAR M, et al. Insight into electronic, magnetic and optical properties of magnetically ordered Bi2Fe4O9[J]. Journal of Magnetism and Magnetic Materials, 2019, 475: 695-702. [4] AMEER S, JINDAL K, TOMAR M, et al. Tunable electronic and magnetic properties of 3d[J]. Journal of Magnetism and Magnetic Materials, 2020, 509: 166893. [5] SUN Y X, XIONG X Y, XIA Z, et al. Study on visible light response and magnetism of bismuth ferrites synthesized by a low temperature hydrothermal method[J]. Ceramics International, 2013, 39(4): 4651-4656. [6] FILIPPETTI A, HILL N A. Coexistence of magnetism and ferroelectricity in perovskites[J]. Physical Review B, 2002, 65(19): 195120. [7] CHEONG S W, MOSTOVOY M. Multiferroics: a magnetic twist for ferroelectricity[J]. Nature Materials, 2007, 6(1): 13-20. [8] SHARMA P, KUMAR A, TANG J Y, et al. Structural, electrical, and magnetic properties of mullite-type Bi2Fe4O9 ceramic[J].Journal of Electroceramics, 2020, 45(4): 148-155. [9] LUO W, ZHU L H, WANG N, et al. Efficient removal of organic pollutants with magnetic nanoscaled BiFeO3 as a reusable heterogeneous Fenton-like catalyst[J]. Environmental Science & Technology, 2010, 44(5): 1786-1791. [10] TSAI C J, YANG C Y, LIAO Y C, et al. Hydrothermally grown bismuth ferrites: controllable phases and morphologies in a mixed KOH/NaOH mineralizer[J]. Journal of Materials Chemistry, 2012, 22(34): 17432-17436. [11] HU Z T, CHEN B, LIM T T. Single-crystalline Bi2Fe4O9 synthesized by low-temperature co-precipitation: performance as photo- and Fenton catalysts[J]. RSC Advances, 2014, 4(53): 27820-27829. [12] HUR N, PARK S, SHARMA P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields[J]. Nature, 2004, 429(6990): 392-395. [13] KIMURA T, GOTO T, SHINTANI H, et al. Magnetic control of ferroelectric polarization[J]. Nature, 2003, 426(6962): 55-58. [14] POOLADI M, SHOKROLLAHI H, LAVASANI S A N H, et al. Investigation of the structural, magnetic and dielectric properties of Mn-doped Bi2Fe4O9 produced by reverse chemical co-precipitation[J]. Materials Chemistry and Physics, 2019, 229: 39-48. [15] KIRSCH A, MURSHED M M, GESING T M. Structural and spectroscopic investigation on the crystallization behaviour of Bi2Fe4O9[J]. Acta Crystallographica Section A Foundations and Advances, 2018, 74(a2): e413. [16] TIAN L, GAO P A, WANG F G, et al. Study on preparation of BiFeO3/Bi2Fe4O9 composite photocatalyst and photocatalytic degradation of various organic dyes in waste water[J]. Russian Journal of Physical Chemistry A, 2021, 95(7): 1495-1504. [17] TAAZAYET W B, ZOUARI I M, HOSNI N, et al. Facile synthesis of pure BiFeO3 and Bi2Fe4O9 nanostructures with enhanced photocatalytic activity[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(5): 2518-2533. [18] WANG G M, LIU S T, HE T C, et al. Enhanced visible-light-driven photocatalytic activities of Bi2Fe4O9/g-C3N4 composite photocatalysts[J]. Materials Research Bulletin, 2018, 104: 104-111. [19] WANG K, XU X G, LU L Y, et al. Magnetically recoverable Ag/Bi2Fe4O9 nanoparticles as a visible-light-driven photocatalyst[J]. Chemical Physics Letters, 2019, 715: 129-133. [20] RAFIQ U, MAJID K. Mitigating the charge recombination by the targeted synthesis of Ag2WO4/Bi2Fe4O9 composite: the facile union of orthorhombic semiconductors towards efficient photocatalysis[J]. Journal of Alloys and Compounds, 2020, 842: 155876. [21] ZHANG Q, GONG W J, WANG J H, et al. Size-dependent magnetic, photoabsorbing, and photocatalytic properties of single-crystalline Bi2Fe4O9 semiconductor nanocrystals[J]. The Journal of Physical Chemistry C, 2011, 115(51): 25241-25246. [22] YOGI A, VARSHNEY D. Cu doping effect of hematite (α-Fe2-xCuxO3): effect on the structural and magnetic properties[J]. Materials Science in Semiconductor Processing, 2014, 21: 38-44. [23] KANAI H, MIZUTANI H, TANAKA T, et al. X-Ray absorption study on the local structures of fine particles of α-Fe2O3-SnO2 gas sensors[J]. Journal of Materials Chemistry, 1992, 2(7): 703-707. [24] APLESNIN S S, UDOD L V, SITNIKOV M N, et al. Enhancement of ferromagnetism and ferroelectricity by oxygen vacancies in mullite Bi2Fe4O9 in the Bi2(Sn0.7Fe0.3)2O7-x matrix[J]. Journal of Magnetism and Magnetic Materials, 2022, 559: 169530. [25] SUN S M, WANG W Z, ZHANG L, et al. Visible light-induced photocatalytic oxidation of phenol and aqueous ammonia in flowerlike Bi2Fe4O9 suspensions[J]. The Journal of Physical Chemistry C, 2009, 113(29): 12826-12831. [26] RUAN Q J, ZHANG W D. Tunable morphology of Bi2Fe4O9 crystals for photocatalytic oxidation[J]. The Journal of Physical Chemistry C, 2009, 113(10): 4168-4173. [27] YU J G, XIONG J F, CHENG B, et al. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity[J]. Applied Catalysis B: Environmental, 2005, 60(3/4): 211-221. |