[1] OHSATO H. Research and development of microwave dielectric ceramics for wireless communications[J]. Journal of the Ceramic Society of Japan, 2005, 113(1323): 703-711. [2] SEBASTIAN M T. Acknowledgment[M]//Dielectric Materials for Wireless Communication. Amsterdam: Elsevier, 2008: xiii. [3] SEBASTIAN M T, WANG H, JANTUNEN H. Low temperature co-fired ceramics with ultra-low sintering temperature: a review[J]. Current Opinion in Solid State and Materials Science, 2016, 20(3): 151-170. [4] LUO X F, REN L C, XIA Y S, et al. Microstructure, sinterability and properties of CaO-B2O3-SiO2 glass/Al2O3 composites for LTCC application[J]. Ceramics International, 2017, 43(9): 6791-6795. [5] 张高群,汪 宏.超低温烧结微波介质陶瓷研究进展[J].硅酸盐学报,2017,45(9):1256-1264. ZHANG G Q, WANG H. Research progress of ultra-low temperature cofired ceramics for microwave applications[J]. Journal of the Chinese Ceramic Society, 2017, 45(9): 1256-1264(in Chinese). [6] WENG Z Z, GUAN R G, XIONG Z X. Effects of the ZBS addition on the sintering behavior and microwave dielectric properties of 0.95Zn2SiO4-0.05CaTiO3 ceramics[J]. Journal of Alloys and Compounds, 2017, 695: 3517-3521. [7] WENG Z Z, WU C, XIONG Z X, et al. Low temperature sintering and microwave dielectric properties of TiO2 ceramics[J]. Journal of the European Ceramic Society, 2017, 37(15): 4667-4672. [8] ZHANG G Q, GUO J, HE L, et al. Preparation and microwave dielectric properties of ultra-low temperature sintering ceramics in K2O-MoO3 binary system[J]. Journal of the American Ceramic Society, 2014, 97(1): 241-245. [9] ZHANG G Q, WANG H, GUO J, et al. Ultra-low sintering temperature microwave dielectric ceramics based on Na2O-MoO3 binary system[J]. Journal of the American Ceramic Society, 2015, 98(2): 528-533. [10] ZHOU D, PANG L X, QI Z M, et al. Novel ultra-low temperature co-fired microwave dielectric ceramic at 400 degrees and its chemical compatibility with base metal[J]. Scientific Reports, 2014, 4: 5980. [11] ZHOU D, WANG H, PANG L X. Bi2O3-MoO3 binary system: an alternative ultralow sintering temperature microwave dielectric[J]. Journal of the American Ceramic Society, 2009, 92(10): 2242-2246. [12] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of Li2(M2+)2Mo3O12 and Li3(M3+)Mo3O12 (M=Zn, Ca, Al, and In) lyonsite-related-type ceramics with ultra-low sintering temperatures[J]. Journal of the American Ceramic Society, 2011, 94(3): 802-805. [13] LIU X B, ZHOU H F, CHEN X L, et al. Phase structure and microwave dielectric properties of (1-x)Li2Zn3Ti4O12-xTiO2 ceramics[J]. Journal of Alloys and Compounds, 2012, 515: 22-25. [14] QUAN T T, SHU G J, HAO L, et al. Phase compositions, microstructures, and microwave dielectric properties of Li2Zn3Ti4O12-based temperature stable materials modified by CaTiO3 additions[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(22): 20160-20165. [15] 杨晓丽.Li2Zn2Mo3O12基微波介质陶瓷的制备及其介电性能研究[D].南京:南京航空航天大学,2017. YANG X L. Study on the preparation and dielectric properties of Li2Zn2Mo3O12-based microwave dielectric ceramics[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017(in Chinese). [16] 徐 静,杨晓丽,郑 勇,等.温度稳定型Li2(Zn1-xCox)2Mo3O12陶瓷的微波介电性能研究[J].电子元件与材料,2017,36(11):16-21+37. XU J, YANG X L, ZHENG Y, et al. Microwave dielectric properties of temperature stable Li2(Zn1-xCox)2Mo3O12 ceramics[J]. Electronic Components and Materials, 2017, 36(11): 16-21+37(in Chinese). [17] ZHOU D, RANDALL C A, PANG L X, et al. Microwave dielectric properties of (ABi)1/2MoO4 (A=Li, Na, K, Rb, Ag) type ceramics with ultra-low firing temperatures[J]. Materials Chemistry and Physics, 2011, 129(3): 688-692. [18] ZHANG Y H, SUN J J, DAI N, et al. Crystal structure, infrared spectra and microwave dielectric properties of novel extra low-temperature fired Eu2Zr3(MoO4)9 ceramics[J]. Journal of the European Ceramic Society, 2019, 39(4): 1127-1131. [19] GUO J, ZHOU D, WANG H, et al. Microwave and infrared dielectric response of temperature stable (1-x)BaMoO4-xTiO2 composite ceramics[J]. Journal of the American Ceramic Society, 2012, 95(1): 232-237. |