人工晶体学报 ›› 2022, Vol. 51 ›› Issue (12): 2137-2152.
王宇1,2,3, 顾鹏2, 付君3, 王鹏刚2, 雷沛3, 袁丽3
收稿日期:
2022-07-04
出版日期:
2022-12-15
发布日期:
2023-01-09
通讯作者:
顾 鹏,工程师。E-mail:1620472714@qq.com
作者简介:
王 宇(1981—),男,北京市人,博士研究生。E-mail:wangyu@sctlxd.com
WANG Yu1,2,3, GU Peng2, FU Jun3, WANG Penggang2, LEI Pei3, YUAN Li3
Received:
2022-07-04
Online:
2022-12-15
Published:
2023-01-09
摘要: 作为第三代半导体材料的典型代表,碳化硅因具备宽的带隙、高的热导率、高的击穿电场以及大的电子迁移速率等性能优势,被认为是制作高温、高频、高功率以及高压器件的理想材料之一,可有效突破传统硅基功率半导体器件的物理极限,并被誉为带动“新能源革命”的绿色能源器件。作为制造功率器件的核心材料,碳化硅单晶衬底的生长是关键,尤其是单一4H-SiC晶型制备。各晶型体结构之间有着良好的结晶学相容性和接近的形成自由能,导致所生长的碳化硅晶体容易形成多型夹杂缺陷并严重影响器件性能。为此,本文首先概述了物理气相传输(PVT)法制备碳化硅晶体的基本原理、生长过程以及存在的问题,然后针对多型夹杂缺陷的产生给出了可能的诱导因素并对相关机理进行解释,进一步介绍了常见的碳化硅晶型结构鉴别方式,最后对碳化硅晶体研究作出展望。
中图分类号:
王宇, 顾鹏, 付君, 王鹏刚, 雷沛, 袁丽. PVT法生长4H-SiC晶体及多型夹杂缺陷研究进展[J]. 人工晶体学报, 2022, 51(12): 2137-2152.
WANG Yu, GU Peng, FU Jun, WANG Penggang, LEI Pei, YUAN Li. Research Progress on the Growth of 4H-SiC Crystal by PVT Method and the Defect of Polytype Inclusions[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2022, 51(12): 2137-2152.
[1] BAO S Y, WANG Y, LINA K, et al. A review of silicon-based wafer bonding processes, an approach to realize the monolithic integration of Si-CMOS and Ⅲ-Ⅴ-on-Si wafers[J]. Journal of Semiconductors, 2021, 42(2): 84-103. [2] CHEN K J, HÄBERLEN O, LIDOW A, et al. GaN-on-Si power technology: devices and applications[J]. IEEE Transactions on Electron Devices, 2017, 64(3): 779-795. [3] ZHU L P, WANG L F, PAN C F, et al. Enhancing the efficiency of silicon-based solar cells by the piezo-phototronic effect[J]. ACS Nano, 2017, 11(2): 1894-1900. [4] OKIL M, SALEM M S, ABDOLKADER T M, et al. From crystalline to low-cost silicon-based solar cells: a review[J]. Silicon, 2022, 14(5): 1895-1911. [5] 盛 况,任 娜,徐弘毅.碳化硅功率器件技术综述与展望[J].中国电机工程学报,2020,40(6):1741-1753. SHENG K, REN N, XU H Y. A recent review on silicon carbide power devices technologies[J]. Proceedings of the CSEE, 2020, 40(6): 1741-1753(in Chinese). [6] TAO M L, DENG X C, WU H, et al. Design, fabrication and characterization of 10 kV/100 A 4H-SiC PIN power rectifier[J]. Materials Science Forum, 2020, 1014: 115-119. [7] LIU G Y, WU Y B, LI K J, et al. Development of high power SiC devices for rail traction power systems[J]. Journal of Crystal Growth, 2019, 507: 442-452. [8] XU X G, HU X B, CHEN X F. SiC single crystal growth and substrate processing[M]//Light-Emitting Diodes. Cham: Springer International Publishing, 2019: 41-92. [9] HAN R J, XU X G, HU X B, et al. Development of bulk SiC single crystal grown by physical vapor transport method[J]. Optical Materials, 2003, 23(1/2): 415-420. [10] PATEL A, MITTAL M, RAO D V S, et al. Syntaxy and defect distribution during the bulk growth of 4H-SiC single crystal[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(2): 2187-2192. [11] KUMAR A, KOKKONDA R K, BHATTACHARYA S, et al. High voltage output characteristics and short circuit robustness of HV SiC MOSFETs[C]//2021 IEEE Energy Conversion Congress and Exposition. Vancouver, BC, Canada. IEEE,: 5277-5282. [12] 柏 松,李士颜,杨晓磊,等.高压大功率碳化硅电力电子器件研制进展[J].科技导报,2021,39(14):56-62. BAI S, LI S Y, YANG X L, et al. Progress in developing high-voltage SiC power devices[J]. Science & Technology Review, 2021, 39(14): 56-62(in Chinese). [13] POWELL A R, SUMAKERIS J J, KHLEBNIKOV Y, et al. Bulk growth of large area SiC crystals[J]. Materials Science Forum, 2016, 858: 5-10. [14] SCHMITT E, STRAUBINGER T, RASP M, et al. Polytype stability and defects in differently doped bulk SiC[J]. Journal of Crystal Growth, 2008, 310(5): 966-970. [15] LIN S H, CHEN Z M, YANG Y, et al. Formation and evolution of micropipes in SiC crystals[J]. CrystEngComm, 2012, 14(5): 1588-1594. [16] GAO P, XIN J, LIU X C, et al. Control of 4H polytype of SiC crystals by moving up the crucible to adjust the temperature field of the growth interface[J]. CrystEngComm, 2019, 21(45): 6964-6968. [17] TYMICKI E, GRASZA K, RACKA K, et al. Growth of 4H-SiC single crystals on 6H-SiC seeds with an open backside by PVT method[J]. Materials Science Forum, 2009, 615/616/617: 15-18. [18] RACKA-SZMIDT K, TYMICKI E, RACZKIEWICZ M, et al. Effect of cerium impurity on the stable growth of the 4H-SiC polytype by the physical vapour transport method[J]. Journal of Crystal Growth, 2022, 586: 126616. [19] LEE H J, LEE H T, SHIN H W, et al. Effect of porous graphite for high quality SiC crystal growth by PVT method[J]. Materials Science Forum, 2015, 821/822/823: 43-46. [20] KIMOTO T, COOPER J A. Fundamentals of silicon carbide technology: growth, characterization, devices, and applications[M]. Singapore: John Wiley & Sons Singapore Pte Ltd, 2014. [21] GUO H J, HUANG W, LIU X, et al. Analysis of polytype stability in PVT grown silicon carbide single crystal using competitive lattice model Monte Carlo simulations[J]. AIP Advances, 2014, 4(9): 097106. [22] TUPITSYN E Y, ARULCHAKKARAVARTHI A, DRACHEV R V, et al. Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth[J]. Journal of Crystal Growth, 2007, 299(1): 70-76. [23] STRAUBINGER T L, BICKERMANN M, HOFMANN D, et al. Stability criteria for 4H-SiC bulk growth[J]. Materials Science Forum, 2001, 353/354/355/356: 25-28. [24] TYMICKI E, GRASZA K, RACKA K, et al. Effect of nitrogen doping on the growth of 4H polytype on the 6H-SiC seed by PVT method[J]. Materials Science Forum, 2012, 717/718/719/720: 29-32. [25] STEIN R A, LANIG P, LEIBENZEDER S. Influence of surface energy on the growth of 6H- and 4H-SiC polytypes by sublimation[J]. Materials Science and Engineering: B, 1992, 11(1/2/3/4): 69-71. [26] SHIRAMOMO T, GAO B, MERCIER F, et al. Study of the effect of doped impurities on polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2014, 385: 95-99. [27] PAPANASAM E, PRASHANTH K B, CHANTHINI B, et al. A comprehensive review of recent progress, prospect and challenges of silicon carbide and its applications[J]. Silicon, 2022: 1-14. [28] TAIROV Y M, TSVETKOV V F. Investigation of growth processes of ingots of silicon carbide single crystals[J]. Journal of Crystal Growth, 1978, 43(2): 209-212. [29] LIU J L, GAO J Q, CHENG J K, et al. Effects of graphitization degree of crucible on SiC single crystal growth process[J]. Diamond and Related Materials, 2006, 15(1): 117-120. [30] SANCHEZ E M, HEYDEMANN V D, SNYDER D, et al. Thermal decomposition cavities in physical vapor transport grown SiC[J]. Materials Science Forum, 2000, 338/339/340/341/342: 55-58. [31] LUO H, HAN X F, HUANG Y C, et al. Numerical simulation of a novel method for PVT growth of SiC by adding a graphite block[J]. Crystals, 2021, 11(12): 1581. [32] TAIROV Y M, TSVETKOV V F. General principles of growing large-size single crystals of various silicon carbide polytypes[J]. Journal of Crystal Growth, 1981, 52: 146-150. [33] STEIN R A, LANIG P. Control of polytype formation by surface energy effects during the growth of SiC monocrystals by the sublimation method[J]. Journal of Crystal Growth, 1993, 131(1/2): 71-74. [34] CHOI J W, PARK J H, SEO J D, et al. Quality improvement of 4″ 4H-SiC crystal by using modified seed adhesion method[C]. 2016 European Conference on Silicon Carbide & Related Materials (ECSCRM), 2016: 1. [35] 刘 兵,陈治明,封先锋,等.SiC籽晶背面镀膜对生长晶体品质的影响[J].人工晶体学报,2013,42(10):2024-2027. LIU B, CHEN Z M, FENG X F, et al. Effect of back coating of seed on SiC crystal quality[J]. Journal of Synthetic Crystals, 2013, 42(10): 2024-2027(in Chinese). [36] 李 翠,杨立文,蒋秉轩,等.PVT法生长6H-SiC单晶中平面六方空洞缺陷研究[J].稀有金属,2012,36(6):942-946. LI C, YANG L W, JIANG B X, et al. Hexagonal voids in 6H-SiC single crystal by PVT[J]. Chinese Journal of Rare Metals, 2012, 36(6): 942-946(in Chinese). [37] 刘 兵.籽晶背面镀膜对SiC晶体质量的影响[D].西安:西安理工大学,2013:18-19. LIU B. Effect of seed back coating on SiC crystal quality[D]. Xi’an: Xi’an University of Technology, 2013: 18-19(in Chinese). [38] TUPITSYN E Y, GALYUKOV A, BOGDANOV M V, et al. Bulk SiC crystal growth at constant growth rate utilizing a new design of resistive furnace[J]. Materials Science Forum, 2008, 600/601/602/603: 27-30. [39] GRASZA K, TYMICKI E, RACKA K, et al. Experimental verification of a novel system for the growth of SiC single crystals[J]. Materials Science Forum, 2011, 679/680: 16-19. [40] SCHMITT E, STRAUBINGER T L, RASP M, et al. Investigations on polytype stability and dislocation formation in 4H-SiC grown by PVT[J]. Materials Science Forum, 2008, 600/601/602/603: 11-14. [41] YANG N J, SONG B, WANG W J, et al. Control of the temperature field by double induction coils for growth of large-sized SiC single crystals via the physical vapor transport technique[J]. CrystEngComm, 2022, 24(18): 3475-3480. [42] 卢嘉铮,张 辉,郑丽丽,等.大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J].人工晶体学报,2022,51(3):371-384. LU J Z, ZHANG H, ZHENG L L, et al. Thermal field design and optimization of resistance heated large-size SiC crystal growth system[J]. Journal of Synthetic Crystals, 2022, 51(3): 371-384(in Chinese). [43] 刘春艳,张明福.苏州维特莱恩公司高品质6英寸电阻法碳化硅单晶研制成功[J].人工晶体学报,2019,48(9):1768. LIU C Y, ZHANG M F. Suzhou Vitline Company successfully developed high-quality 6-inch silicon carbide single crystal by resistance method[J]. Journal of Synthetic Crystals, 2019, 48(9): 1768(in Chinese). [44] 郭静霓,仇 知,杨雅明,等.碳化硅晶体结构、制备及应用[J].冶金与材料,2020,40(4):119-120. GUO J N, QIU Z, YANG Y M, et al. Crystal structure, preparation and application of silicon carbide[J]. Metallurgy and Materials, 2020, 40(4): 119-120(in Chinese). [45] NISHIZAWA S, F MERCIER. Effect of nitrogen and aluminium on silicon carbide polytype stability[J]. Journal of Crystal Growth, 2019, 518: 99-102. [46] MERCIER F, NISHIZAWA S I. Role of surface effects on silicon carbide polytype stability[J]. Journal of Crystal Growth, 2012, 360: 189-192. [47] GUTKIN M Y, SHEINERMAN A G, ARGUNOVA T S, et al. Interaction of micropipes with foreign polytype inclusions in SiC[J]. Journal of Applied Physics, 2006, 100(9): 093518. [48] 赵 宁,刘春俊,王 波,等.4H-SiC晶体中的层错研究[J].无机材料学报,2018,33(5):540-544. ZHAO N, LIU C J, WANG B, et al. Stacking faults in 4H-SiC single crystal[J]. Journal of Inorganic Materials, 2018, 33(5): 540-544(in Chinese). [49] KAKIMOTO K, GAO B, SHIRAMOMO T, et al. Thermodynamic analysis of SiC polytype growth by physical vapor transport method[J]. Journal of Crystal Growth, 2011, 324(1): 78-81. [50] YANG X L, PENG Y, CHEN X F, et al. Polytype Transformation in 4H-SiC single crystals grown on on-axis Seeds[J]. 2019 16th China International Forum on Solid State Lighting & 2019 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 2019: 11-13. [51] ROST H J, DOERSCHEL J, IRMSCHER K, et al. Polytype stability in nitrogen-doped PVT—grown 2″—4H-SiC crystals[J]. Journal of Crystal Growth, 2005, 275(1/2): e451-e454. [52] BASCERI C, KHLEBNIKOV I, KHLEBNIKOV Y, et al. Growth of micropipe-free single crystal silicon carbide (SiC) ingots via physical vapor transport (PVT)[J]. Materials Science Forum, 2006, 527/528/529: 39-42. [53] OHTANI N, KATSUNO M, FUJIMOTO T, et al. Surface step model for micropipe formation in SiC[J]. Journal of Crystal Growth, 2001, 226(2/3): 254-260. [54] GUTKIN M Y, SHEINERMAN A G, SMIRNOV M A, et al. Micropipe absorption mechanism of pore growth at foreign polytype boundaries in SiC crystals[J]. Journal of Applied Physics, 2009, 106(12): 123515. [55] ZHU L N, LI H Q, HU B Q, et al. New type of defects in SiC grown by the PVT method[J]. Journal of Physics: Condensed Matter, 2005, 17(10): L85-L91. [56] UL HASSAN J, KARHU R, LILJA L, et al. Wafer scale on-axis homoepitaxial growth of 4H-SiC(0001) for high-power devices: influence of different gas phase chemistries and growth rate limitations[J]. Crystal Growth & Design, 2019, 19(6): 3288-3297. [57] YAKIMOVA R, SYVÄJÄRVI M, IAKIMOV T, et al. Polytype stability in seeded sublimation growth of 4H-SiC boules[J]. Journal of Crystal Growth, 2000, 217(3): 255-262. [58] PARK J H, YANG T K, KIM I S, et al. Process and crucible modification for growth of high doped 4H-SiC crystal with larger diameter[J]. Materials Science Forum, 2012, 717/718/719/720: 17-20. [59] LIN S H, CHEN Z M, FENG X F, et al. Observation of polytype stability in different-impurities-doped 6H-SiC crystals[J]. Diamond and Related Materials, 2011, 20(4): 516-519. [60] LIU C J, CHEN X L, PENG T H, et al. Step flow and polytype transformation in growth of 4H-SiC crystals[J]. Journal of Crystal Growth, 2014, 394: 126-131. [61] ONOUE K, NISHIKAWA T, KATSUNO M, et al. Nitrogen incorporation kinetics during the sublimation growth of 6H and 4H SiC[J]. Japanese Journal of Applied Physics, 1996, 35(Part 1, No. 4A): 2240-2243. [62] OHTANI N, KATSUNO M, NAKABAYASHI M, et al. Investigation of heavily nitrogen-doped n+ 4H-SiC crystals grown by physical vapor transport[J]. Journal of Crystal Growth, 2009, 311(6): 1475-1481. [63] KATO T, MIURA T, WADA K, et al. Defect and growth analysis of SiC bulk single crystals with high nitrogen doping[J]. Materials Science Forum, 2007, 556/557: 239-242. [64] ITOH A, AKITA H, KIMOTO T, et al. High-quality 4H-SiC homoepitaxial layers grown by step-controlled epitaxy[J]. Applied Physics Letters, 1994, 65(11): 1400-1402. [65] TYMICKI E, GRASZA K, RACKA-DZIETKO K, et al. Growth of 4H-SiC crystals on the 8° off-axis 6H-SiC seed by PVT method[J]. Materials Science Forum, 2010, 645: 17-20. [66] RACKA K, TYMICKI E, GRASZA K, et al. Growth of SiC by PVT method with different sources for doping by a cerium impurity, CeO2 or CeSi2[J]. Journal of Crystal Growth, 2014, 401: 677-680. [67] ARIYAWONG K, CHATILLON C, BLANQUET E, et al. A first step toward bridging silicon carbide crystal properties and physical chemistry of crystal growth[J]. CrystEngComm, 2016, 18(12): 2119-2124. [68] KANAYA M, TAKAHASHI J, FUJIWARA Y, et al. Controlled sublimation growth of single crystalline 4H-SiC and 6H-SiC and identification of polytypes by X-ray diffraction[J]. Applied Physics Letters, 1991, 58(1): 56-58. [69] LI X, JIANG S, HU X, et al. Polytype control in 6H-SiC grown via sublimation method[J]. Trans Tech Publications, 2006, 527: 95-98. [70] ZHANG F, YANG K, LIU X, et al. Growth of six inches N-type SiC single crystals with low dislocation defects[C]. 2020 17th China International Forum on Solid State Lighting & 2020 International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS), 2020: 19-22. [71] TAIROV Y M, TSVETKOV V F. Progress in controlling the growth of polytypic crystals[J]. Progress in Crystal Growth and Characterization, 1983, 7(1/2/3/4): 111-162. [72] SELDER M, KADINSKI L, MAKAROV Y, et al. Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT[J]. Journal of Crystal Growth, 2000, 211(1/2/3/4): 333-338. [73] CHOI J W, KIM J G, JANG B K, et al. Polytype control by pretreatment of SiC source powder for 4H-SiC single crystal growth[J]. Materials Science Forum, 2019, 4682: 38-41. [74] TAIROV Y M. Growth of bulk SiC[J]. Materials Science and Engineering: B, 1995, 29(1/2/3): 83-89. [75] AVROV D D, BAKIN A S, DOROZHKIN S I, et al. The analysis of mass transfer in system β-SiC-α-SiC under silicon carbide sublimation growth[J]. Journal of Crystal Growth, 1999, 198/199: 1011-1014. [76] YEO I G, LEE T W, PARK J H, et al. Effect of the seed polarity for high quality 4H-SiC crystal grown on 6H-SiC seed by PVT method[J]. Materials Science Forum, 2011, 1230(679/680): 44-47. [77] ARAKI S, GAO B, NISHIZAWA S, et al. Total pressure-controlled PVT SiC growth for polytype stability during using 2D nucleation theory[J]. Crystal Research and Technology, 2016, 51(5): 344-348. [78] SHIRAMOMO T, GAO B, MERCIER F, et al. Thermodynamical analysis of polytype stability during PVT growth of SiC using 2D nucleation theory[J]. Journal of Crystal Growth, 2012, 352(1): 177-180. [79] NAKABAYASHI M, FUJIMOTO T, KATSUNO M, et al. Growth and characterization of large-diameter 4H-SiC crystals with high crystal quality[J]. Materials Science Forum, 2010, 907(645/646/647/648): 9-12. [80] 中国科学院上海硅酸盐研究所碳化硅晶体项目部.碳化硅晶体生长与缺陷[M].北京:科学出版社,2012:27-31. Silicon Carbide Crystal Project Department, Shanghai Institute of Ceramics, Chinese Academy of Sciences. Growth and defects of silicon carbide crystals[M]. Beijing: Science Press, 2012: 27-31(in Chinese). [81] 田国辉,陈亚杰,冯清茂.拉曼光谱的发展及应用[J].化学工程师,2008,22(1):34-36. TIAN G H, CHEN Y J, FENG Q M. Development and application of Raman technology[J]. Chemical Engineer, 2008, 22(1): 34-36(in Chinese). [82] 冯 敏,王玉芳,郝建民,等.拉曼光谱方法研究SiC晶体的晶型[J].光散射学报,2003,15(3):158-161. FENG M, WANG Y F, HAO J M, et al. Raman study of SiC polytype structure[J]. Chinese Journal of Light Scattering, 2003, 15(3): 158-161(in Chinese). [83] 姜志艳.拉曼光谱在SiC单晶中的应用[J].数字技术与应用,2017(5):107-109. JIANG Z Y. Application of Raman spectroscopy in SiC single crystal[J]. Digital Technology and Application, 2017(5): 107-109(in Chinese). [84] 王 丽,胡小波,董 捷,等.Micro-Raman光谱鉴定碳化硅单晶的多型结构[J].功能材料,2004(S1):3400-3404. WANG L, HU X B, DONG J, et al. Polytypes identification of SiC crystal by micro-Raman spectroscopy[J]. Journal of Functional Materials, 2004(S1): 3400-3404(in Chinese). [85] NAKASHIMA S, HANGYO M. Raman intensity profiles and the stacking structure in SiC polytypes[J]. Solid State Communications, 1991, 80(1): 21-24. |
[1] | 杨祥龙, 陈秀芳, 谢雪健, 彭燕, 于国建, 胡小波, 王垚浩, 徐现刚. 8英寸导电型4H-SiC单晶的生长[J]. 人工晶体学报, 2022, 51(9-10): 1745-1748. |
[2] | 罗东, 贾伟, 王英民, 戴鑫, 贾志刚, 董海亮, 李天保, 王利忠, 许并社. p型4H-SiC单晶衬底表征及第一性原理计算[J]. 人工晶体学报, 2022, 51(7): 1169-1176. |
[3] | 卢嘉铮, 张辉, 郑丽丽, 马远, 宋德鹏. 大尺寸电阻加热式碳化硅晶体生长热场设计与优化[J]. 人工晶体学报, 2022, 51(3): 371-384. |
[4] | 李哲, 张刚, 付丹扬, 王琦琨, 雷丹, 任忠鸣, 吴亮. PVT法同质外延制备大尺寸Al极性氮化铝晶体生长工艺及其表征分析研究[J]. 人工晶体学报, 2022, 51(2): 208-215. |
[5] | 娄艳芳, 巩拓谌, 张文, 郭钰, 彭同华, 杨建, 刘春俊. 8英寸导电型4H-SiC单晶衬底制备与表征[J]. 人工晶体学报, 2022, 51(12): 2131-2136. |
[6] | 张刚, 付丹扬, 李哲, 黄嘉丽, 王琦琨, 任忠鸣, 吴亮. 籽晶台形状对PVT法同质外延生长氮化铝单晶初始生长的影响[J]. 人工晶体学报, 2022, 51(1): 27-34. |
[7] | 罗昊, 张序清, 杨德仁, 皮孝东. 碳化硅单晶生长用高纯碳化硅粉体的研究进展[J]. 人工晶体学报, 2021, 50(8): 1562-1574. |
[8] | 史月增, 王增华, 程红娟, 张丽, 殷利迎. PVT法氮化铝晶体铝面、氮面生长对比分析[J]. 人工晶体学报, 2021, 50(12): 2240-2245. |
[9] | 龚建超;朱如忠;刘欢;王琦琨;李哲;张刚;吴亮. PVT法钨坩埚系统中自发生长自支撑AlN单晶及其表征分析[J]. 人工晶体学报, 2020, 49(7): 1162-1167. |
[10] | 程红娟, 金雷, 武红磊, 齐海涛, 王增华, 史月曾, 张丽. AlN单晶生长行为研究[J]. 人工晶体学报, 2020, 49(11): 2200-2205. |
[11] | 贺广东;王琦琨;雷丹;龚建超;黄嘉丽;付丹扬;吴亮. 物理气相传输法生长1英寸AlN单晶及其表征分析[J]. 人工晶体学报, 2019, 48(9): 1604-1607. |
[12] | 徐永宽;金雷;程红娟;史月增;张丽;齐海涛. 不同颜色AlN单晶缺陷研究[J]. 人工晶体学报, 2018, 47(7): 1340-1345. |
[13] | 李源;石爱红;孙彩华;马生元. SiC晶体生长中气相组分输运特性[J]. 人工晶体学报, 2018, 47(11): 2260-2264. |
[14] | 杨祥龙;杨昆;陈秀芳;彭燕;胡小波;徐现刚;李赟;赵志飞. 高质量N型SiC单晶生长及其器件应用[J]. 人工晶体学报, 2015, 44(6): 1427-1431. |
[15] | 杨昆;杨祥龙;崔潆心;彭燕;陈秀芳;胡小波;徐现刚. 物理气相传输法制备SiC单晶中碳包裹物研究[J]. 人工晶体学报, 2014, 43(7): 1602-1606. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||