[1] CAREY J H, OLIVER B G. Intensity effects in the electrochemical photolysis of water at the TiO2 electrode[J]. Nature, 1976, 259(5544): 554-556. [2] NIU F J, WANG D G, LI F, et al. Hybrid photoelectrochemical water splitting systems: from interface design to system assembly[J]. Advanced Energy Materials, 2020, 10(11): 1900399. [3] YANG W, PRABHAKAR R R, TAN J, et al. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting[J]. Chemical Society Reviews, 2019, 48(19): 4979-5015. [4] SONG H H, SUN Z Q, XU Y, et al. Fabrication of NH2-MIL-125(Ti) incorporated TiO2 nanotube arrays composite anodes for highly efficient PEC water splitting[J]. Separation and Purification Technology, 2019, 228: 115764. [5] LI D, TAKEUCHI R, CHANDRA D, et al. Visible light-driven water oxidation on an in situ N2-intercalated WO3 nanorod photoanode synthesized by a dual-functional structure-directing agent[J]. ChemSusChem, 2018, 11(7): 1151-1156. [6] BAI S, YANG X J, LIU C Y, et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency[J]. ACS Sustainable Chemistry & Engineering, 2018, 6 (10): 12906. [7] KAUR P, PARK Y, SILLANPÅÅ M, et al. Synthesis of a novel SnO2/graphene-like carbon/TiO2 electrodes for the degradation of recalcitrant emergent pharmaceutical pollutants in a photo-electrocatalytic system[J]. Journal of Cleaner Production, 2021, 313: 127915. [8] LI Y, WANG Q Z, HU X S, et al. Constructing NiFe-metal-organic frameworks from NiFe-layered double hydroxide as a highly efficient cocatalyst for BiVO4 photoanode PEC water splitting[J]. Chemical Engineering Journal, 2022, 433: 133592. [9] WANG J, XUE C, YAO W Q, et al. MOF-derived hollow TiO2@C/FeTiO3 nanoparticles as photoanodes with enhanced full spectrum light PEC activities[J]. Applied Catalysis B: Environmental, 2019, 250: 369-381. [10] ALI M, PERVAIZ E, NOOR T, et al. Recent advancements in MOF-based catalysts for applications in electrochemical and photoelectrochemical water splitting: a review[J]. International Journal of Energy Research, 2021, 45(2): 1190-1226. [11] YUE K, ZHANG X D, JIANG S T, et al. Recent advances in strategies to modify MIL-125(Ti) and its environmental applications[J]. Journal of Molecular Liquids, 2021, 335: 116108. [12] HAN X, YANG X B, LIU G B, et al. Boosting visible light photocatalytic activity via impregnation-induced RhB-sensitized MIL-125(Ti)[J]. Chemical Engineering Research and Design, 2019, 143: 90-99. [13] WANG H, ZHANG Q, LI J J, et al. The covalent Coordination-driven Bi2S3@NH2-MIL-125(Ti)-SH heterojunction with boosting photocatalytic CO2 reduction and dye degradation performance[J]. Journal of Colloid and Interface Science, 2022, 606: 1745-1757. [14] GUO H X, GUO D, ZHENG Z S, et al. Visible-light photocatalytic activity of Ag@MIL-125(Ti) microspheres[J]. Applied Organometallic Chemistry, 2015, 29(9): 618-623. [15] VALERO-ROMERO M J, SANTACLARA J G, OAR-ARTETA L, et al. Photocatalytic properties of TiO2 and Fe-doped TiO2 prepared by metal organic framework-mediated synthesis[J]. Chemical Engineering Journal, 2019, 360: 75-88. [16] SALIMI M, ESRAFILI A, JONIDI JAFARI A, et al. Photocatalytic degradation of cefixime with MIL-125(Ti)-mixed linker decorated by g-C3 N4 under solar driven light irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 582: 123874. [17] LONG Z Q, ZHANG G M, DU H B, et al. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2021, 407: 124394. [18] MANO G, YANG H, JOY T, et al. Preparation of SrTiO3/Bi2S3 heterojunction for efficient photocatalytic hydrogen production[J]. Energy & Fuels, 2021, 35(18): 14995-15004. [19] LIANG Y C, LI T H. Controllable morphology of Bi2S3 nanostructures formed via hydrothermal vulcanization of Bi2O3 thin-film layer and their photoelectrocatalytic performances[J]. Nanotechnology Reviews, 2021, 11: 284-297. [20] DAN-HARDI M, SERRE C, FROT T, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. [21] ZLOTEA C, PHANON D, MAZAJ M, et al. Effect of NH2 and CF3 functionalization on the hydrogen sorption properties of MOFs[J]. Dalton Transactions, 2011, 40(18): 4879-4881. [22] WANG M H, YANG L Y, YUAN J Y, et al. Heterostructured Bi2S3@NH2-MIL-125(Ti) nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light[J]. RSC Advances, 2018, 8(22): 12459-12470. [23] KIM S N, KIM J, KIM H Y, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93. [24] YU C F, WANG K, YANG P Y, et al. One-pot facile synthesis of Bi2S3/SnS2/Bi2O3 ternary heterojunction as advanced double Z-scheme photocatalytic system for efficient dye removal under sunlight irradiation[J]. Applied Surface Science, 2017, 420: 233-242. [25] LI J L, MENG F M, WU H T, et al. Construction of Ag: ZnIn2S4/Bi2S3 Z-scheme heterojunctions for boosting interfacial charge separation and photocatalytic degradation of TC[J]. Applied Surface Science, 2022, 605: 154763. [26] ZHAO L Z, WU H H, YANG C H, et al. Mechanistic origin of the high performance of yolk@shell Bi2S3@N-doped carbon nanowire electrodes[J]. ACS Nano, 2018, 12(12): 12597-12611. [27] RI C N, SONG-GOL K, JU-YONG J, et al. Construction of the Bi2WO6/Bi4V2O11 heterojunction for highly efficient visible-light-driven photocatalytic reduction of Cr(vi)[J]. New Journal of Chemistry, 2018, 42(1): 647-653. [28] LI C M, YU S Y, DONG H J, et al. Mesoporous ferriferrous oxide nanoreactors modified on graphitic carbon nitride towards improvement of physical, photoelectrochemical properties and photocatalytic performance[J]. Journal of Colloid and Interface Science, 2018, 531: 331-342. [29] TIAN N, HUANG H W, LIU C Y, et al. In situ co-pyrolysis fabrication of CeO2/g-C3 N4 n-n type heterojunction for synchronously promoting photo-induced oxidation and reduction properties[J]. Journal of Materials Chemistry A, 2015, 3(33): 17120-17129. [30] LIU C, LIU T, LI Y Z, et al. A dendritic Sb2Se3/In2S3 heterojunction nanorod array photocathode decorated with a MoSx catalyst for efficient solar hydrogen evolution[J]. Journal of Materials Chemistry A, 2020, 8(44): 23385-23394. |