人工晶体学报 ›› 2023, Vol. 52 ›› Issue (1): 156-169.
王栋, 魏子健, 张倩, 夏月庆, 张秀丽, 王天汉, 袁志华, 兰明明
收稿日期:
2022-08-08
出版日期:
2023-01-15
发布日期:
2023-02-15
通信作者:
兰明明,博士,副教授。E-mail:lanming@henau.edu.cn
作者简介:
王 栋(1972—),男,河南省人,副教授。E-mail:xjrshwd@163.com
基金资助:
WANG Dong, WEI Zijian, ZHANG Qian, XIA Yueqing, ZHANG Xiuli, WANG Tianhan, YUAN Zhihua, LAN Mingming
Received:
2022-08-08
Online:
2023-01-15
Published:
2023-02-15
摘要: 二维过渡金属硫族化合物(TMDs)是继石墨烯之后的新型二维材料,由于其自身的独特物理化学性质在半导体、光电材料、能源储存和催化制氢等方面备受瞩目。化学气相沉积(CVD)是目前适合实现大规模制备二维材料的工艺之一,制备过程中参数的高度可控性使其具有很大优势。本文综述了近期通过CVD制备TMDs的研究进展,探讨了在CVD制备工艺中各种参数对产物生长和最终形貌的影响,包括前驱体、温度、衬底、辅助剂、压力和载气流量等。列举了一些改进的CVD制备工艺,并对其特点进行了总结。最后讨论了目前CVD制备TMDs所面临的挑战并对其发展前景进行展望。
中图分类号:
王栋, 魏子健, 张倩, 夏月庆, 张秀丽, 王天汉, 袁志华, 兰明明. 化学气相沉积法制备二维过渡金属硫族化合物研究进展[J]. 人工晶体学报, 2023, 52(1): 156-169.
WANG Dong, WEI Zijian, ZHANG Qian, XIA Yueqing, ZHANG Xiuli, WANG Tianhan, YUAN Zhihua, LAN Mingming. Research Progress on Preparation of Two-Dimensional Transition Metal Dichalcogenides by CVD[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 156-169.
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. [2] GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. [3] 张广宇,龙 根,林生晃,等.二维材料:从基础到应用[J].中国科学院院刊,2022,37(3):368-374. ZHANG G Y, LONG G, LIN S H, et al. Two-dimensional materials: from fundamental to application[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(3): 368-374(in Chinese). [4] AJAYAN P, KIM P, BANERJEE K. Two-dimensional van der Waals materials[J]. Physics Today, 2016, 69(9): 38-44. [5] LIU Y J, XU Z, GAO W W, et al. Graphene and other 2D colloids: liquid crystals and macroscopic fibers[J]. Advanced Materials, 2017, 29(14): 1606794. [6] 郇亚欢,朱莉杰,李 宁,等.二维金属性过渡金属硫属化合物的可控制备和潜在应用[J].科学通报,2021,66(1):34-52. HUAN Y H, ZHU L J, LI N, et al. Controllable syntheses and potential applications of two-dimensional metallic transition metal dichalcogenides[J]. Chinese Science Bulletin, 2021, 66(1): 34-52(in Chinese). [7] ALI AHMAD S O, ASHFAQ A, AKBAR M U, et al. Application of two-dimensional materials in perovskite solar cells: recent progress, challenges, and prospective solutions[J]. Journal of Materials Chemistry C, 2021, 9(40): 14065-14092. [8] MENG C X, DAS P, SHI X Y, et al. In situ and operando characterizations of 2D materials in electrochemical energy storage devices[J]. Small Science, 2021, 1(4): 2000076. [9] BERTOLAZZI S, BONDAVALLI P, ROCHE S, et al. Nonvolatile memories based on graphene and related 2D materials[J]. Advanced Materials, 2019, 31(10): 1806663. [10] MA Q Y, ZHENG Y, LUO D, et al. Two-dimensional materials for all-solid-state lithium batteries[J]. Advanced Materials, 2021, Issue: e2108079. [11] ZHANG Y X, ZHANG L, LV T A, et al. Two-dimensional transition metal chalcogenides for alkali metal ions storage[J]. ChemSusChem, 2020, 13(6): 1114-1154. [12] PARKER M. Two-dimensional materials bring memory and circuitry closer[J]. Nature Electronics, 2021, 4(9): 630. [13] GONG Y J, YANG S B, LIU Z, et al. Graphene-network-backboned architectures for high-performance lithium storage[J]. Advanced Materials, 2013, 25(29): 3979-3984. [14] LIANG S J, CHENG B, CUI X Y, et al. Van der waals heterostructures for high-performance device applications: challenges and opportunities[J]. Advanced Materials, 2020, 32(27): e1903800. [15] SHI Z, ZHANG H, KHAN K, et al. Two-dimensional materials toward Terahertz optoelectronic device applications[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 51: 100473. [16] XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. [17] AKKANEN S T M, FERNANDEZ H A, SUN Z P. Optical modification of 2D materials: methods and applications[J]. Advanced Materials, 2022, 34(19): e2110152. [18] LENA D, ZHONGCHANG W, GUOZHONG Z. Novel intelligent devices: Two-dimensional materials based memristors[J]. Frontiers of Physics, 2022(2): 83-85. [19] ZHU W J, LOW T, WANG H, et al. Nanoscale electronic devices based on transition metal dichalcogenides[J]. 2D Materials, 2019, 6(3): 032004. [20] KWON K C, BAEK J H, HONG K, et al. Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing[J]. Nano-Micro Letters, 2022, 14(1): 58. [21] YANG C, WANG G C, LIU M M, et al. Mechanism, material, design, and implementation principle of two-dimensional material photodetectors[J]. Nanomaterials, 2021, 11(10): 2688. [22] BURMISTROV I S, KACHOROVSKII V Y, KLUG M J, et al. Emergent continuous symmetry in anisotropic flexible two-dimensional materials[J]. Physical Review Letters, 2022, 128(9): 096101. [23] 刘 璐,王李波,刘大荣,等.二维纳米材料在柔性压阻传感器中的应用研究进展[J].材料导报,2022,36(4):19-28. LIU L, WANG L B, LIU D R, et al. Research progress on the application of two-dimensional nano-material in flexible piezoresistive sensors[J]. Materials Reports, 2022, 36(4): 19-28(in Chinese). [24] AN C H, NIE F M, ZHANG R J, et al. Two-dimensional material-enhanced flexible and self-healable photodetector for large-area photodetection[J]. Advanced Functional Materials, 2021, 31(22): 2100136. [25] JIANG H, ZHENG L, LIU Z, et al. Two-dimensional materials: from mechanical properties to flexible mechanical sensors [J]. InfoMat, 2020, 2(6): 1077-1094. [26] LIN L, SHI P, FU L, et al. First-principles study of two-dimensional material Cr2B2 as catalyst for electrochemical nitrogen reduction reaction[J]. Journal of Electroanalytical Chemistry, 2021, 899: 115677. [27] TANG T M, WANG Z L, GUAN J Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678. [28] YANG S B, GONG Y J, ZHANG J S, et al. Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light[J]. Advanced Materials, 2013, 25(17): 2452-2456. [29] HERNANDEZ RUIZ K, WANG Z Q, CIPRIAN M, et al. Chemical vapor deposition mediated phase engineering for 2D transition metal dichalcogenides: strategies and applications[J]. Small Science, 2022, 2(1): 2100047. [30] VOIRY D, MOHITE A, CHHOWALLA M. Phase engineering of transition metal dichalcogenides[J]. Chemical Society Reviews, 2015, 44(9): 2702-2712. [31] KANG J, TONGAY S, ZHOU J, et al. Band offsets and heterostructures of two-dimensional semiconductors[J]. Applied Physics Letters, 2013, 102(1): 012111. [32] LIU J B, LI P J, CHEN Y F, et al. Large-area synthesis of high-quality and uniform monolayer graphene without unexpected bilayer regions[J]. Journal of Alloys and Compounds, 2014, 615: 415-418. [33] CAI Z Y, LIU B L, ZOU X L, et al. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures[J]. Chemical Reviews, 2018, 118(13): 6091-6133. [34] GONG Y J, LIN J H, WANG X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers[J]. Nature Materials, 2014, 13(12): 1135-1142. [35] GONG Y J, LEI S D, YE G L, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures[J]. Nano Letters, 2015, 15(9): 6135-6141. [36] 李小茜,高立群,陈茂林.二维过渡金属硫族化物异质结的CVD可控生长[J/OL].山西大学学报(自然科学), 2022:1-13[2022-10-20]. LI X X, GAO L Q, CHEN M L. Review: controlled CVD growth of two-dimensional transition metal dichalcogenides heterostructures[J/OL]. Journal of Shanxi University (Natural Science Edition), 2022: 1-13[2022-10-20](in Chinese). [37] 王 铄,王文辉,吕俊鹏,等.化学气相沉积法制备大面积二维材料薄膜:方法与机制[J].物理学报,2021,70(2):026802. WANG S, WANG W H, LÜ J P, et al. Chemical vapor deposition growth of large-areas two dimensional materials: approaches and mechanisms[J]. Acta Physica Sinica, 2021, 70(2): 026802(in Chinese). [38] JEON Y, SEO J, KIM J, et al. Wafer-scale two-dimensional molybdenum diselenide phototransistor array via liquid-precursor-assisted chemical vapor deposition[J]. Advanced Optical Materials, 2022, 10(3): 2101492. [39] SIRAT M S, JOHARI M H, MOHMAD A R, et al. Uniform growth of MoS2 films using ultra-low MoO3 precursor in one-step heating chemical vapor deposition[J]. Thin Solid Films, 2022, 744: 139092. [40] ZHAO S W, ZHANG Y H, WANG S, et al. Controllable growth of bilayer WS2 by chemical vapor deposition and application for photodetectors[J]. Materials Letters, 2022, 317: 132103. [41] 王天琦.WSe2纳米薄膜的制备及光电性能[D].保定:河北大学,2021. WANG T Q. Preparation and photoelectric properties of WSe2 nanostructure thin films[D]. Baoding: Hebei University, 2021(in Chinese). [42] LIU B L, FATHI M, CHEN L, et al. Chemical vapor deposition growth of monolayer WSe2 with tunable device characteristics and growth mechanism study[J]. ACS Nano, 2015, 9(6): 6119-6127. [43] MAWLONG L P L, BIROJU R K, GIRI P K. Low-temperature chemical vapor deposition growth of MoS2 nanodots and their Raman and photoluminescence profiles[J]. Frontiers in Nanotechnology, 2021, 3: 775732. [44] CHOI J, HA MIN‐JI, PARK J C, et al. A strategy for wafer-scale crystalline MoS2 thin films with controlled morphology using pulsed metal-organic chemical vapor deposition at low temperature[J]. Advanced Materials Interfaces, 2022, 9(4): 2101785. [45] GONG Y J, LI B, YE G L, et al. Direct growth of MoS2 single crystals on polyimide substrates[J]. 2D Materials, 2017, 4(2): 021028. [46] GAO Y, LIU Y, LIU Z. Controllable growth of two-dimensional materials on noble metal substrates[J]. iScience, 2021, 24(12): 103432. [47] 王 慧.过渡金属硫族化合物薄膜的低温制备及电学性能原位调控研究[D].南昌:南昌大学,2020. WANG H. Low temperature growth and In-situ modulation of electronic properties of transition metal dichalcogenide thin films[D]. Nanchang: Nanchang University, 2020(in Chinese). [48] 冯晶晶.二维二硫化钨薄膜的形貌调控及生长机制研究[D].南京:南京邮电大学,2020. FENG J J. Controllable synthesis and formation mechanism on morphology of two-dimensional WS2 flakes[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2020(in Chinese). [49] TIAN Y, ZHENG M Y, CHENG Y, et al. Epitaxial growth of ZrSe2 nanosheets on sapphire via chemical vapor deposition for optoelectronic application[J]. Journal of Materials Chemistry C, 2021, 9(39): 13954-13962. [50] CHEN J Y, ZHAO X X, TAN S J R, et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass[J]. Journal of the American Chemical Society, 2017, 139(3): 1073-1076. [51] ZHOU Y B, DENG B, ZHOU Y, et al. Low-temperature growth of two-dimensional layered chalcogenide crystals on liquid[J]. Nano Letters, 2016, 16(3): 2103-2107. [52] AUKARASEREENONT P, GOFF A, NGUYEN C K, et al. Liquid metals: an ideal platform for the synthesis of two-dimensional materials[J]. Chemical Society Reviews, 2022, 51(4): 1253-1276. [53] QIAN S Y, YANG R X, LAN F F, et al. Growth of continuous MoS2 film with large grain size by chemical vapor deposition[J]. Materials Science in Semiconductor Processing, 2019, 93: 317-323. [54] LI H, ZHANG X H, TANG Z K. Catalytic growth of large area monolayer molybdenum disulfide film by chemical vapor deposition[J]. Thin Solid Films, 2019, 669: 371-376. [55] 李官勐.无机钠/铵盐辅助CVD生长MoS2及晶体管性能研究[D].大连:大连理工大学,2021. LI G M. Growth of MoS2 by inorganic sodium/ammonium salts-assisted CVD and its transistor performance[D]. Dalian: Dalian University of Technology, 2021(in Chinese). [56] JIANG S L, ZHANG C, ZHAO E D, et al. Synthesis of ultrathin PdSe2 flakes for hydrogen evolution reaction[J]. Applied Surface Science, 2021, 570: 151178. [57] 常 诚,陈 伟,陈 也,等.二维材料最新研究进展(英文)[J].物理化学学报,2021,37(12):4-154. CHANG C, CHEN W, CHEN Y, et al. Recent progress on two-dimensional materials[J]. Acta Physico-Chimica Sinica, 2021, 37(12): 4-154. [58] XIE C Y, YANG P F, HUAN Y H, et al. Roles of salts in the chemical vapor deposition synthesis of two-dimensional transition metal chalcogenides[J]. Dalton Transactions, 2020, 49(30): 10319-10327. [59] BAE J, YOO Y. A novel carbon-assisted chemical vapor deposition growth of large-area uniform monolayer MoS2 and WS2[J]. Nanomaterials, 2021, 11(9): 2423. [60] CHANG Y P, LI W B, YANG Y C, et al. Oxidation and degradation of WS2 monolayers grown by NaCl-assisted chemical vapor deposition: mechanism and prevention[J]. Nanoscale, 2021, 13(39): 16629-16640. [61] LI S S. Salt-assisted chemical vapor deposition of two-dimensional transition metal dichalcogenides[J]. Science, 2021, 24(11): 103229. [62] 柳 鸣,郭伟玲,孙 捷.MOCVD法生长二维范德华材料的研究进展[J].半导体技术,2021,46(7):497-503. LIU M, GUO W L, SUN J. Research progress of two-dimensional van der waals materials grown by MOCVD[J]. Semiconductor Technology, 2021, 46(7): 497-503(in Chinese). [63] KANG K, XIE S E, HUANG L J, et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity[J]. Nature, 2015, 520(7549): 656-660. [64] KALANYAN B, KIMES W A, BEAMS R, et al. Rapid wafer-scale growth of polycrystalline 2H-MoS2 by pulsed metalorganic chemical vapor deposition[J]. Chemistry of Materials: a Publication of the American Chemical Society, 2017, 29(15): 6279-6288. [65] CHOI S H, STEPHEN B, PARK J H, et al. Water-assisted synthesis of molybdenum disulfide film with single organic liquid precursor[J]. Scientific Reports, 2017, 7: 1983. [66] KIM D, JO Y, JUNG D H, et al. Electrical and optical characteristics of two-dimensional MoS2 film grown by metal-organic chemical vapor deposition[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(6): 3563-3567. [67] COHEN A, PATSHA A, MOHAPATRA P K, et al. Growth-etch metal-organic chemical vapor deposition approach of WS2 atomic layers[J]. ACS Nano, 2021, 15(1): 526-538. [68] LIU N, KIM J, OH J, et al. Growth of multiorientated polycrystalline MoS2 using plasma-enhanced chemical vapor deposition for efficient hydrogen evolution reactions[J]. Nanomaterials, 2020, 10(8): 1465. [69] LU A Y, ZHU H Y, XIAO J, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744-749. |
[1] | 李传皓, 李忠辉, 彭大青, 张东国, 杨乾坤, 罗伟科. 大尺寸GaN微波材料范德瓦耳斯外延机理及应力调控研究[J]. 人工晶体学报, 2024, 53(2): 252-257. |
[2] | 陈沛然, 焦腾, 陈威, 党新明, 刁肇悌, 李政达, 韩宇, 于含, 董鑫. p-Si/n-Ga2O3异质结制备与特性研究[J]. 人工晶体学报, 2024, 53(1): 73-81. |
[3] | 黄田, 马赛, 刘宵宇, 黎迎, 武红, 徐永兵, 魏陆军, 李峰, 普勇. 具有大磁各向异性和高居里温度的二维笼目磁性材料Fe3As[J]. 人工晶体学报, 2023, 52(8): 1413-1421. |
[4] | 张万贺, 胡建英, 周涛, 吕怡婷, 王克良. 镁和铝离子电池负极材料Nb2N的第一性原理研究[J]. 人工晶体学报, 2023, 52(8): 1451-1457. |
[5] | 汪正鹏, 张崇德, 孙新雨, 胡天澄, 崔梅, 张贻俊, 巩贺贺, 任芳芳, 顾书林, 张荣, 叶建东. 切割角蓝宝石基氧化镓薄膜MOCVD外延及日盲紫外光电探测器制备[J]. 人工晶体学报, 2023, 52(6): 1007-1015. |
[6] | 简小刚, 张毅, 梁晓伟, 姚文山. 硫硒元素掺杂金刚石表面的生长位点研究[J]. 人工晶体学报, 2023, 52(6): 1120-1127. |
[7] | 杨学林, 沈波. Si衬底上外延生长GaN基射频电子材料的研究进展[J]. 人工晶体学报, 2023, 52(5): 723-731. |
[8] | 赵飞云, 任翱博, 巫江. 高功率多结905 nm垂直腔面发射激光器[J]. 人工晶体学报, 2023, 52(5): 818-824. |
[9] | 王高凯, 张兴旺. 六方氮化硼外延生长研究进展[J]. 人工晶体学报, 2023, 52(5): 825-841. |
[10] | 曹晟, 张锋, 刘绍祥, 陈思凯, 赵杨, 石轩, 赵洪泉. Er掺杂WS2的制备及光电特性研究[J]. 人工晶体学报, 2023, 52(5): 849-856. |
[11] | 屈鹏霏, 金鹏, 周广迪, 王镇, 许敦洲, 吴巨, 郑红军, 王占国. 单晶金刚石异质外延用铱复合衬底研究现状[J]. 人工晶体学报, 2023, 52(5): 857-877. |
[12] | 白玲, 宁静, 张进成, 王东, 王博宇, 武海迪, 赵江林, 陶然, 李忠辉. 多晶金刚石衬底范德瓦耳斯外延GaN薄膜[J]. 人工晶体学报, 2023, 52(5): 901-908. |
[13] | 张鑫, 沈俊, 湛立, 崔恒清, 葛炳辉, 武传强. 枝晶WS2/单层WS2薄膜的CVD可控制备与表征[J]. 人工晶体学报, 2023, 52(5): 909-917. |
[14] | 韩跃斌, 蒲勇, 施建新, 闫鸿磊. 高速旋转垂直热壁CVD外延生长n型4H-SiC膜的研究[J]. 人工晶体学报, 2023, 52(5): 918-924. |
[15] | 格畅, 周国香, 秦旭晨, 王广, 阎童童, 李佳. 二维Janus型铬硫化物电子和压电性质研究[J]. 人工晶体学报, 2023, 52(4): 613-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||