人工晶体学报 ›› 2023, Vol. 52 ›› Issue (1): 170-181.
梁发文1, 官海汕2, 李江鸿1, 李帅1, 黄俊兰2, 江学顶2, 李富华2, 陈忻2, 许伟城2
收稿日期:
2022-09-26
出版日期:
2023-01-15
发布日期:
2023-02-15
通信作者:
江学顶,博士,副教授。E-mail:jiangxueding@fosu.edu.cn;许伟城,博士,副教授。E-mail:weichengxu@fosu.edu.cn
作者简介:
梁发文(1998—),男,广东省人,硕士研究生。E-mail:2686113814@qq.com
基金资助:
LIANG Fawen1, GUAN Haishan2, LI Jianghong1, LI Shuai1, HUANG Junlan2, JIANG Xueding2, LI Fuhua2, CHEN Xin2, XU Weicheng2
Received:
2022-09-26
Online:
2023-01-15
Published:
2023-02-15
摘要: 近年来,石墨相氮化碳(g-C3N4)以其合适的带隙宽度、丰富的活性位点和成本低廉等优点,成为新兴的可见光响应非金属光催化剂,被广泛应用于光催化降解有机污染物领域。然而,纯g-C3N4对可见光的吸收效率较低且光生电子和空穴复合速率快,导致其光催化活性处于较低水平。基于g-C3N4的非金属特性,通过非金属掺杂可以有效提高g-C3N4的光催化性能,引起了学者们的广泛关注。本文介绍了目前非金属掺杂g-C3N4复合材料常见的制备方法,着重归纳了不同类型的非金属掺杂g-C3N4光催化降解水中有机污染物的相关研究进展,探讨其作为光催化剂在可见光条件下降解有机污染物的相关机理。最后,提出目前g-C3N4基复合材料在光催化降解水中有机污染物中所面临的挑战,旨在为非金属掺杂g-C3N4耦合光催化在水中有机污染物降解方面提供参考。
中图分类号:
梁发文, 官海汕, 李江鸿, 李帅, 黄俊兰, 江学顶, 李富华, 陈忻, 许伟城. 非金属掺杂改性g-C3N4光催化降解水中有机污染物的研究进展[J]. 人工晶体学报, 2023, 52(1): 170-181.
LIANG Fawen, GUAN Haishan, LI Jianghong, LI Shuai, HUANG Junlan, JIANG Xueding, LI Fuhua, CHEN Xin, XU Weicheng. Research Progress on Photocatalytic Degradation of Organic Pollutants in Water by Nonmetal Doping Modified g-C3N4[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(1): 170-181.
[1] GUAN Y H, MA J, REN Y M, et al. Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals[J]. Water Research, 2013, 47(14): 5431-5438. [2] NIDHEESH P V, RAJAN R. Removal of rhodamine B from a water medium using hydroxyl and sulphate radicals generated by iron loaded activated carbon[J]. RSC Advances, 2016, 6(7): 5330-5340. [3] HE B, FENG M, CHEN X Y, et al. Fabrication of potassium ion decorated 1D/2D g-C3N4/g-C3N4 homojunction enabled by dual-ions synergistic strategy for enhanced photocatalytic activity towards degradation of organic pollutants[J]. Applied Surface Science, 2022, 575: 151695. [4] HU X N, ZHANG Y, WANG B J, et al. Novel g-C3N4/BiOClxI1-x nanosheets with rich oxygen vacancies for enhanced photocatalytic degradation of organic contaminants under visible and simulated solar light[J]. Applied Catalysis B: Environmental, 2019, 256: 117789. [5] SUN Q, SUN Y, ZHOU M Y, et al. A 2D/3D g-C3N4/ZnO heterojunction enhanced visible-light driven photocatalytic activity for sulfonamides degradation[J]. Ceramics International, 2022, 48(5): 7283-7290. [6] WANG X C, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light[J]. Nature Materials, 2009, 8(1): 76-80. [7] GOETTMANN F, FISCHER A, ANTONIETTI M, et al. Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene[J]. Angewandte Chemie International Edition, 2006, 45(27): 4467-4471. [8] LOTSCH B V, DÕBLINGER M, SEHNERT J, et al. Unmasking melon by a complementary approach employing electron diffraction, solid-state NMR spectroscopy, and theoretical calculations-structural characterization of a carbon nitride polymer[J]. Chemistry, 2007, 13(17): 4969-4980. [9] 赖树锋,肖开棒,梁锦芝,等.石墨氮化碳光催化剂的制备及其改性研究进展[J].人工晶体学报,2020,49(4):744-750. LAI S F, XIAO K B, LIANG J Z, et al. Research progress on preparation and modification of graphite carbon nitride photocatalyst[J]. Journal of Synthetic Crystals, 2020, 49(4): 744-750(in Chinese). [10] TAN J, LI Z F, LI J, et al. Graphitic carbon nitride-based materials in activating persulfate for aqueous organic pollutants degradation: a review on materials design and mechanisms[J]. Chemosphere, 2021, 262: 127675. [11] ZHU J J, XIAO P, LI H L, et al. Graphitic carbon nitride: synthesis, properties, and applications in catalysis[J]. ACS Applied Materials & Interfaces, 2014, 6(19): 16449-16465. [12] STARUKH H, PRAUS P. Doping of graphitic carbon nitride with non-metal elements and its applications in photocatalysis[J]. Catalysts, 2020, 10(10): 1119. [13] QIAO J L, NIAZI N K, ZHANG J N, et al. Copper as a single metal atom based photo-, electro- and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: a review[J]. Nano Research Energy, 2022: null. [14] 马爱琼, 张 电, 张由子, 等. 纳米片层状类石墨氮化碳的制备及其光催化性能(英文)[J]. 硅酸盐学报, 2020, 48(01): 44-52. MA A Q, ZHANG D, ZHANG Y Z, et al. Preparation and photocatalytic properties under visible light irradiation of graphite-like carbon nitride nanosheets[J]. Journal of The Chinese Ceramic Society, 2020, 48(01): 44-52. [15] 左士祥,陈 瑶,吴孟德,等.Ag@AgBr/C3N4-凹凸棒石复合材料的制备及光催化脱硫性能(英文)[J].硅酸盐学报,2017(7):1024-1030. ZUO S X, CHEN Y, WU M D, et al. Preparation of Ag@AgBr/C3N4-attapulgite composite for photocatalytic desulfurization[J]. Journal of the Chinese Ceramic Society, 2017(7): 1024-1030. [16] 黄建辉,林文婷,谢丽燕,等.石墨相氮化碳-碘氧化铋层状异质结的构建及其光催化杀菌性能[J].环境科学,2017,38(9):3979-3986. HUANG J H, LIN W T, XIE L Y, et al. Construction of graphitic carbon nitride-bismuth oxyiodide layered heterostructures and their photocatalytic antibacterial performance[J]. Environmental Science, 2017, 38(9): 3979-3986(in Chinese). [17] WANG Y X, WANG H, CHEN F Y, et al. Facile synthesis of oxygen doped carbon nitride hollow microsphere for photocatalysis[J]. Applied Catalysis B: Environmental, 2017, 206: 417-425. [18] 王亦清, 沈少华. 非金属掺杂石墨相氮化碳光催化的研究进展与展望(英文)[J]. 物理化学学报, 2020, 36(03): 57-70. WANG Y Q, SHEN S H. Progress and prospects of non-metal doped graphitic carbon nitride for improved photocatalytic performances[J]. Acta Physico-Chimica Sinica, 2020, 36(03): 57-70. [19] ZHANG P, LI X H, SHAO C L, et al. Hydrothermal synthesis of carbon-rich graphitic carbon nitride nanosheets for photoredox catalysis[J]. Journal of Materials Chemistry A, 2015, 3(7): 3281-3284. [20] CAO M Y, WANG K, TUDELA I, et al. Improve photocatalytic performance of g-C3N4 through balancing the interstitial and substitutional chlorine doping[J]. Applied Surface Science, 2021, 536: 147784. [21] MISHRA A, MEHTA A, BASU S M, et al. Graphitic carbon nitride (g-C3N4)-based metal-free photocatalysts for water splitting: a review[J]. Carbon, 2019, 149: 693-721. [22] FENG D Q, CHENG Y H, HE J, et al. Enhanced photocatalytic activities of g-C3N4 with large specific surface area via a facile one-step synthesis process[J]. Carbon, 2017, 125: 454-463. [23] ZHANG Y, GONG H H, LI G X, et al. Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light[J]. International Journal of Hydrogen Energy, 2017, 42(1): 143-151. [24] WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 533: 47-58. [25] 王文霞,刘小丰,陈 浠,等.多孔g-C3N4基光催化材料的制备及应用研究进展[J].化工进展,2022,41(1):300-309. WANG W X, LIU X F, CHEN X, et al. Research advances of synthesis and applications of porous g-C3N4-based photocatalyst[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 300-309(in Chinese). [26] ZOU X Y, SUN Z X, HU Y H. G-C3N4-based photoelectrodes for photoelectrochemical water splitting: a review[J]. Journal of Materials Chemistry A, 2020, 8(41): 21474-21502. [27] XING Y P, WANG X K, HAO S H, et al. Recent advances in the improvement of g-C3N4 based photocatalytic materials[J]. Chinese Chemical Letters, 2021, 32(1): 13-20. [28] ISMAEL M. Environmental remediation and sustainable energy generation via photocatalytic technology using rare earth metals modified g-C3N4: a review[J]. Journal of Alloys and Compounds, 2023, 931: 167469. [29] YAN Q, HUANG G F, LI D F, et al. Facile synthesis and superior photocatalytic and electrocatalytic performances of porous B-doped g-C3N4 nanosheets[J]. Journal of Materials Science & Technology, 2018, 34(12): 2515-2520. [30] WANG L N, WANG C Y, HU X Y, et al. Metal/graphitic carbon nitride composites: synthesis, structures, and applications[J]. Chemistry, an Asian Journal, 2016, 11(23): 3305-3328. [31] YE S, WANG R, WU M Z, et al. A review on g-C3N4 for photocatalytic water splitting and CO2 reduction[J]. Applied Surface Science, 2015, 358: 15-27. [32] KOMOROWSKA-DURKA M, DIMITRAKIS G, BOGDAĿ D, et al. A concise review on microwave-assisted polycondensation reactions and curing of polycondensation polymers with focus on the effect of process conditions[J]. Chemical Engineering Journal, 2015, 264: 633-644. [33] YAN S C, LI Z S, ZOU Z G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(6): 3894-3901. [34] LIU S Z, LI D G, SUN H Q, et al. Oxygen functional groups in graphitic carbon nitride for enhanced photocatalysis[J]. Journal of Colloid and Interface Science, 2016, 468: 176-182. [35] LIU G, NIU P, SUN C H, et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4[J]. Journal of the American Chemical Society, 2010, 132(33): 11642-11648. [36] ZHANG S, GU P C, MA R, et al. Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review[J]. Catalysis Today, 2019, 335: 65-77. [37] ZHANG B, LI X J, ZHAO Y, et al. Facile synthesis of oxygen doped mesoporous graphitic carbon nitride with high photocatalytic degradation efficiency under simulated solar irradiation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 580: 123736. [38] XIA Y M, HE Z M, SU J B, et al. Polyacrylamide gel synthesis and photocatalytic performance of PbBiO2Br nanosheets[J]. Materials Letters, 2019, 241: 64-67. [39] HU F P, LUO W D, HU Y Y, et al. Insight into the kinetics and mechanism of visible-light photocatalytic degradation of dyes onto the P doped mesoporous graphitic carbon nitride[J]. Journal of Alloys and Compounds, 2019, 794: 594-605. [40] ZHAO K, KHAN I, QI K Z, et al. Ionic liquid assisted preparation of phosphorus-doped g-C3N4 photocatalyst for decomposition of emerging water pollutants[J]. Materials Chemistry and Physics, 2020, 253: 123322. [41] XIN G, MENG Y L. Pyrolysis synthesized g-C3N4 for photocatalytic degradation of methylene blue[J]. Journal of Chemistry, 2013, 2013: 187912. [42] YANG B, ZHOU H C, ZHANG X M, et al. Electron spin-polarization and band gap engineering in carbon-modified graphitic carbon nitrides[J]. Journal of Materials Chemistry C, 2015, 3(41): 10886-10891. [43] LING F L, LI W J, YE L J. The synergistic effect of non-metal doping or defect engineering and interface coupling on the photocatalytic property of g-C3N4: first-principle investigations[J]. Applied Surface Science, 2019, 473: 386-392. [44] WEN J Q, XIE J, CHEN X B, et al. A review on g-C3N4-based photocatalysts[J]. Applied Surface Science, 2017, 391: 72-123. [45] LI Y P, WU S L, HUANG L Y, et al. Synthesis of carbon-doped g-C3N4 composites with enhanced visible-light photocatalytic activity[J]. Materials Letters, 2014, 137: 281-284. [46] SHE X J, LIU L, JI H Y, et al. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light[J]. Applied Catalysis B: Environmental, 2016, 187: 144-153. [47] LI Z J, RAZIQ F, LIU C, et al. Surface-engineering strategies for g-C3N4 as efficient visible-light photocatalyst[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 6: 57-62. [48] JIANG L B, YUAN X Z, ZENG G M, et al. Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation[J]. Journal of Colloid and Interface Science, 2019, 536: 17-29. [49] HUANG J, NIE G, DING Y B. Metal-free enhanced photocatalytic activation of dioxygen by g-C3N4 doped with abundant oxygen-containing functional groups for selective N-deethylation of rhodamine B[J]. Catalysts, 2019, 10(1): 6. [50] HUANG J X, LI D G, LI R B, et al. An efficient metal-free phosphorus and oxygen co-doped g-C3N4 photocatalyst with enhanced visible light photocatalytic activity for the degradation of fluoroquinolone antibiotics[J]. Chemical Engineering Journal, 2019, 374: 242-253. [51] ASAHI R, MORIKAWA T, OHWAKI T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293(5528): 269-271. [52] LI J H, SHEN B, HONG Z H, et al. A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity[J]. Chemical Communications, 2012, 48(98): 12017-12019. [53] 李小娟,叶兰妹,廖凤珍,等.杂原子掺杂碳材料活化过硫酸盐技术的研究进展[J].化工进展,2021,40(1):273-281. LI X J, YE L M, LIAO F Z, et al. Research progress in the application of heteroatom-doped carbonaceous materials for persulfate activation[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 273-281(in Chinese). [54] LI Y F, WANG S, CHANG W, et al. Preparation and enhanced photocatalytic performance of sulfur doped terminal-methylated g-C3N4 nanosheets with extended visible-light response[J]. Journal of Materials Chemistry A, 2019, 7(36): 20640-20648. [55] HU S Z, MA L, YOU J G, et al. A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst[J]. RSC Advances, 2014, 4(41): 21657-21663. [56] ZHANG Q, ZHANG X. Facile fabrication of phosphorus-doped g-C3N4 exhibiting enhanced visible light photocatalytic degradation performance toward textile dye[J]. Solid State Sciences, 2019, 89: 150-155. [57] XU Q X, XU G Q, YU Q B, et al. Nitrogen self-doped high specific surface area graphite carbon nitride for photocatalytic degradating of methylene blue[J].Journal of Nanoparticle Research, 2019, 21(11): 1-13. [58] WANG Y, DI Y, ANTONIETTI M, et al. Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids[J]. Chemistry of Materials, 2010, 22(18): 5119-5121. [59] 李宗宝,王 霞,石 维.C/N自掺杂提高g-C3N4光响应的理论研究[J].四川大学学报(自然科学版),2019,56(4):735-742. LI Z B, WANG X, SHI W. Theoretical study onoptical response improving of g-C3N4 by C/N self-doping[J]. Journal of Sichuan University (Natural Science Edition), 2019, 56(4): 735-742(in Chinese). [60] MA H Q, LI Y, LI S, et al. Novel PO codoped g-C3N4 with large specific surface area: hydrothermal synthesis assisted by dissolution-precipitation process and their visible light activity under anoxic conditions[J]. Applied Surface Science, 2015, 357: 131-138. [61] HU S Z, MA L, XIE Y, et al. Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions[J]. Dalton Transactions, 2015, 44(48): 20889-20897. [62] JING L Q, WANG D D, HE M Q, et al. An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: mechanism, degradation pathway, DFT calculation and toluene selective oxidation[J]. Journal of Hazardous Materials, 2021, 401: 123309. [63] PREEYANGHAA M, VINESH V, SABARIKIRISHWARAN P, et al. Investigating the role of ultrasound in improving the photocatalytic ability of CQD decorated boron-doped g-C3N4 for tetracycline degradation and first-principles study of nitrogen-vacancy formation[J]. Carbon, 2022, 192: 405-417. [64] ZHANG S, LIU Y, GU P C, et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies[J]. Applied Catalysis B: Environmental, 2019, 248: 1-10. [65] XIE L L, DAI Y R, ZHOU Y J, et al. Sulfur (Ⅵ) modified graphite carbon nitride nanosheets with chrysanthemum-like structure and enhanced photocatalytic activity[J]. Chemical Physics Letters, 2018, 693: 1-7. [66] QU X Y, HU S Z, BAI J, et al. A facile approach to synthesize oxygen doped g-C3N4 with enhanced visible light activity under anoxic conditions via oxygen-plasma treatment[J]. New Journal of Chemistry, 2018, 42(7): 4998-5004. [67] GE F Y, XU Y G, ZHOU Y H, et al. Surface amorphous carbon doping of carbon nitride for efficient acceleration of electron transfer to boost photocatalytic activities[J]. Applied Surface Science, 2020, 507: 145145. [68] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, NAKATA K. Decoration of carbon dots over hydrogen peroxide treated graphitic carbon nitride: exceptional photocatalytic performance in removal of different contaminants under visible light[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 374: 161-172. [69] YAN J, ZHOU C J, LI P R, et al. Nitrogen-rich graphitic carbon nitride: controllable nanosheet-like morphology, enhanced visible light absorption and superior photocatalytic performance[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508: 257-264. |
[1] | 潘会宾, 吴婷婷, 葛婧, 黄沛沛, 拓梦琪, 卢久富. 基于四核铜簇单元构筑的配位聚合物及光催化降解性能[J]. 人工晶体学报, 2024, 53(2): 315-321. |
[2] | 王赵鹏, 曾金, 高艳, 王春英. 稀土上转换光催化剂的研究进展[J]. 人工晶体学报, 2024, 53(1): 51-57. |
[3] | 陈伟杰, 花开慧, 雷鸣, 王望龙. 多孔陶瓷负载Ce-TiO2光催化降解印染废水研究[J]. 人工晶体学报, 2024, 53(1): 170-180. |
[4] | 周春起, 张会, 礼楷雨. Janus二维双层MoSSe/WSSe异质结光电性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(9): 1668-1673. |
[5] | 朱红梧, 汪园青, 向妍蕾, 韩蓉, 潘育松, 黄润, 杜超, 潘成岭. 钴掺杂碳活化过硫酸氢钾降解四环素[J]. 人工晶体学报, 2023, 52(9): 1707-1719. |
[6] | 帅朋飞, 黄翡菲, 郭庆丰, 廖立兵, 梅乐夫. K3ScF6∶Tm3+,Yb3+/CdS光催化复合材料的制备及其光催化性能研究[J]. 人工晶体学报, 2023, 52(8): 1467-1476. |
[7] | 马占强, 王楠, 郭葳, 张凯悦, 李娟. 柠檬酸辅助溶剂热法制备Bi2MoO6及其光催化性能[J]. 人工晶体学报, 2023, 52(8): 1477-1484. |
[8] | 孙佳馨, 李爽, 李晓慧, 史思柳, 刘宝慧, 齐嘉慧, 李嘉琦, 张众. 3-(3-吡啶)丙烯酸配体杂化的Keggin型多酸基超分子化合物的合成、结构及光催化性能[J]. 人工晶体学报, 2023, 52(8): 1485-1490. |
[9] | 余海燕, 梁海欧, 白杰, 李春萍. 铜基硫化物光催化改性研究进展[J]. 人工晶体学报, 2023, 52(3): 394-404. |
[10] | 张韬, 薛喆, 万方, 张天颖, 彭广盼, 黄国栋. 微米及纳米WC-Co基BDD污水处理电极的制备研究[J]. 人工晶体学报, 2023, 52(2): 354-362. |
[11] | 张进峰, 富笑男, 郭叶飞, 刘瑞杰, 李媛媛. ZnO/g-C3N4复合光催化剂降解及产氢性能研究[J]. 人工晶体学报, 2023, 52(11): 2057-2067. |
[12] | 田野, 闫哲, 刘建新, 樊彩梅. RuO2/BiOCl复合光催化剂的制备及其固氮性能研究[J]. 人工晶体学报, 2023, 52(10): 1872-1879. |
[13] | 杜晶晶, 赵军伟, 施飞, 赵忠, 卢钱杰, 程晓民. 核壳结构TiO2微球的制备及其光催化性能[J]. 人工晶体学报, 2023, 52(10): 1880-1886. |
[14] | 熊智慧, 孔博, 李志西, 曾体贤, 帅春. La掺杂氧空位的α-Bi2O3电子结构和光学性质的第一性原理研究[J]. 人工晶体学报, 2023, 52(1): 98-104. |
[15] | 孟汝浩, 班新星, 左宏森, 李跃, 栗正新, 邵俊永, 孙冠男, 郝素叶, 韩少星, 张霖, 张国威, 周少杰. TiO2/g-C3N4复合粉体的制备及其在紫外/芬顿反应中光催化性能[J]. 人工晶体学报, 2022, 51(8): 1466-1472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||