[1] PEARTON S J, REN F, ZHANG A P, et al. Fabrication and performance of GaN electronic devices[J]. Materials Science and Engineering: R: Reports, 2000, 30(3/4/5/6): 55-212. [2] EFTHYMIOU L, LONGOBARDI G, CAMUSO G, et al. On the physical operation and optimization of the p-GaN gate in normally-off GaN HEMT devices[J]. Applied Physics Letters, 2017, 110(12): 123502. [3] ANDERSON T J, CHOWDHURY S, AKTAS O, et al. GaN power devices-current status and future directions[J]. The Electrochemical Society Interface, 2018, 27(4): 43-47. [4] NAKAMURA S. First Ⅲ-Ⅴ-nitride-based violet laser diodes[J]. Journal of Crystal Growth, 1997, 170(1/2/3/4): 11-15. [5] JOHNSON M A L, HUGHES W C, ROWLAND W H Jr, et al. Growth of GaN, InGaN, and AlGaN films and quantum well structures by molecular beam epitaxy[J]. Journal of Crystal Growth, 1997, 175/176: 72-78. [6] MELTON W A, PANKOVE J I. GaN growth on sapphire[J]. Journal of Crystal Growth, 1997, 178(1/2): 168-173. [7] DUPUIS R D. Epitaxial growth of Ⅲ-Ⅴ nitride semiconductors by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 1997, 178(1/2): 56-73. [8] NAKAMURA S, MUKAI T, SENOH M. High-power GaN P-N junction blue-light-emitting diodes[J]. Japanese Journal of Applied Physics, 1991, 30(12A): L1998. [9] IWAYA M, KASUGAI H, KAWASHIMA T, et al. Improvement in light extraction efficiency in group Ⅲ nitride-based light-emitting diodes using moth-eye structure[J]. Thin Solid Films, 2006, 515(2): 768-770. [10] SAITO W, DOMON T, OMURA I, et al. Demonstration of 13.56-MHz class-E amplifier using a high-voltage GaN power-HEMT[J]. IEEE Electron Device Letters, 2006, 27(5): 326-328. [11] BOCKOWSKI M. High nitrogen pressure solution growth of GaN[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100203. [12] 任国强, 王建峰, 刘宗亮, 等. 氮化镓单晶生长研究进展[J]. 人工晶体学报, 2019, 48(9): 1588-1598. REN G Q, WANG J F, LIU Z L, et al. Research progress on GaN single crystal growth[J]. Journal of Synthetic Crystals, 2019, 48(9): 1588-1598(in Chinese). [13] KAWAMURA F, MORISHITA M, TANPO M, et al. Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method[J]. Journal of Crystal Growth, 2008, 310(17): 3946-3949. [14] 任国强, 刘宗亮, 李腾坤, 等. 氮化镓单晶的液相生长[J]. 人工晶体学报, 2020, 49(11): 2024-2037. REN G Q, LIU Z L, LI T K, et al. Liquid phase growth of GaN single crystal[J]. Journal of Synthetic Crystals, 2020, 49(11): 2024-2037(in Chinese). [15] YAMANE H, KINNO D, SHIMADA M, et al. GaN single crystal growth from a Na-Ga melt[J]. Journal of Materials Science, 2000, 35(4): 801-808. [16] YAMANE H, KINNO D, SHIMADA M, et al. Crystal growth of GaN from Na-Ga melt in BN containers[J]. Journal of the Ceramic Society of Japan, 1999, 107(1250): 925-929. [17] AOKI M, YAMANE H, SHIMADA M, et al. Growth of GaN single crystals from a Na-Ga melt at 750 ℃ and 5 MPa of N2[J]. Journal of Crystal Growth, 2000, 218(1): 7-12. [18] AOKI M, YAMANE H, SHIMADA M, et al. GaN single crystal growth using high-purity Na as a flux[J]. Journal of Crystal Growth, 2002, 242(1/2): 70-76. [19] IWAHASHI T, KITAOKA Y, KAWAMURA F, et al. Liquid phase epitaxy growth of m-plane GaN substrate using the Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(10): L227-L229. [20] AOKI M, YAMANE H, SHIMADA M, et al. Conditions for seeded growth of GaN crystals by the Na flux method[J]. Materials Letters, 2002, 56(5): 660-664. [21] SI Z W, LIU Z L, HU Y Q, et al. Growth behavior and stress distribution of bulk GaN grown by Na-flux with HVPE GaN seed under near-thermodynamic equilibrium[J]. Applied Surface Science, 2022, 578: 152073. [22] 守山実希, 藤森 拓, 浅見慎也, 等. 第三世代Naフラックス法を用いたパワーデバイス用6インチ GaN基板の開発[J]. 豊田合成技報, 2022, 62: 31-38. MORIYAMA M, FUJIMORI T, ASAMI S, et al. Development of 6-inch GaN Substrates for power device applications using the 3rd generation Na-Flux method[J]. Takeda synthetic Technology, 2022, 62: 31-38(in Japanese). [23] LIU Z L, REN G Q, SHI L, et al. Effect of carbon types on the generation and morphology of GaN polycrystals grown using the Na flux method[J]. CrystEngComm, 2015, 17(5): 1030-1036. [24] MASUMOTO K, SOMENO T, MURAKAMI K, et al. Effect of additives on liquid phase epitaxy growth of non-polar GaN single crystals using Na flux method[J]. Physica Status Solidi C, 2012, 9(3/4): 457-460. [25] IWAHASHI T, KITAOKA Y, KAWAHARA M, et al. Fabrication of a-plane GaN substrate using the Sr-Na flux liquid phase epitaxy technique[J]. Japanese Journal of Applied Physics, 2007, 46(4): L103-L106. [26] BAO H Q, LI H, WANG G, et al. Exploration of Ba3N2 flux for GaN single-crystal growth[J]. Journal of Crystal Growth, 2008, 310(12): 2955-2959. [27] AOKI M, YAMANE H, SHIMADA M, et al. Single crystal growth of GaN by the temperature gradient Na flux method[J]. Journal of Crystal Growth, 2004, 266(4): 461-466. [28] GEJO R, KAWAMURA F, KAWAHARA M, et al. Effect of thermal convection on liquid phase epitaxy of GaN by Na flux method[J]. Japanese Journal of Applied Physics, 2007, 46(12): 7689-7692. [29] IMADE M, MURAKAMI K, MATSUO D, et al. Centimeter-sized bulk GaN single crystals grown by the Na-flux method with a necking technique[J]. Crystal Growth & Design, 2012, 12(7): 3799-3805. [30] IMADE M, IMANISHI M, TODOROKI Y, et al. Fabrication of low-curvature 2 in. GaN wafers by Na-flux coalescence growth technique[J]. Applied Physics Express, 2014, 7(3): 035503. [31] MORI Y, IMANISHI M, MURAKAMI K, et al. Recent progress of Na-flux method for GaN crystal growth[J]. Japanese Journal of Applied Physics, 2019, 58(SC): SC0803. [32] YAMADA T, IMANISHI M, MURAKAMI K, et al. Fabrication of a 1.5-inch freestanding GaN substrate by selective dissolution of sapphire using Li after the Na-flux growth[J]. Journal of Crystal Growth, 2020, 533: 125462. |