人工晶体学报 ›› 2023, Vol. 52 ›› Issue (2): 196-207.
吴忠航1,2, 孙斌2,3, 黄钢1, 屈骞4, 唐懿文2, 孙九爱2
收稿日期:
2022-10-24
出版日期:
2023-02-15
发布日期:
2023-03-08
通信作者:
孙九爱,副教授。E-mail:sunja@sumhs.edu.cn
作者简介:
吴忠航(1986—),男,福建省人,博士,讲师。E-mail:wuzh@sumhs.edu.cn
基金资助:
WU Zhonghang1,2, SUN Bin2,3, HUANG Gang1, QU Qian4, TANG Yiwen2, SUN Jiuai2
Received:
2022-10-24
Online:
2023-02-15
Published:
2023-03-08
摘要: 核医学成像设备中的探测器是整个设备的核心部件。基于闪烁体探测器的核医学成像设备存在光电转换效率低和能量分辨率差等关键问题,短期内难以有效解决。而近年来碲锌镉半导体探测器的发展使得核医学成像设备在能量分辨率和空间分辨率等方面取得了很大的提高。本文以单光子发射计算机断层成像(SPECT)技术为例,首先介绍了核医学成像原理及设备组成,然后从碲锌镉探测器的工作原理及基本结构出发,综述了碲锌镉探测器的新技术及其在临床核医学的应用,最后结合核医学领域应用的需求展望了碲锌镉探测器的研究重点和技术发展趋势。
中图分类号:
吴忠航, 孙斌, 黄钢, 屈骞, 唐懿文, 孙九爱. 碲锌镉器件技术进展及其在SPECT中的应用[J]. 人工晶体学报, 2023, 52(2): 196-207.
WU Zhonghang, SUN Bin, HUANG Gang, QU Qian, TANG Yiwen, SUN Jiuai. Advancement of Cadmium Zinc Telluride Detector and Its Application in SPECT[J]. JOURNAL OF SYNTHETIC CRYSTALS, 2023, 52(2): 196-207.
[1] 周纯武. 现代医学影像科管理发展与进步[J]. 放射学实践, 2013, 28(6): 613-615. ZHOU C W. Development and progress of modern medical imaging department management[J]. Radiologic Practice, 2013, 28(6): 613-615(in Chinese). [2] 王丽梅. 核医学在甲状腺癌诊断和治疗中的价值分析[J]. 中国卫生标准管理, 2021, 12(6): 88-90. WANG L M. The value of nuclear medicine in the diagnosis and treatment of thyroid cancer[J]. China Health Standard Management, 2021, 12(6): 88-90(in Chinese). [3] 陈 飚, 陈春晖. 放射诊疗设备“重要部件”的界定[J]. 中国辐射卫生, 2021, 30(5): 616-619. CHEN B, CHEN C H. The definition of ‘important components’ of radiodiagnosis and radiotherapy equipment[J]. Chinese Journal of Radiological Health, 2021, 30(5): 616-619(in Chinese). [4] 武 蕊, 范东海, 康 阳, 等. 半导体辐射探测材料与器件研究进展[J]. 人工晶体学报, 2021, 50(10): 1813-1829. WU R, FAN D H, KANG Y, et al. Research progress on semiconductor materials and devices for radiation detection[J]. Journal of Synthetic Crystals, 2021, 50(10): 1813-1829(in Chinese). [5] 何 杰, 马 羽, 袁小平, 等. 核医学成像探测器及晶体材料的研究进展[J]. 压电与声光, 2018, 40(3): 460-469. HE J, MA Y, YUAN X P, et al. Current development of detectors and crystal materials for nuclear medicine imaging system[J]. Piezoelectrics & Acoustooptics, 2018, 40(3): 460-469(in Chinese). [6] 张秋实, 卢闫晔, 谢肇恒, 等. 用于医学成像的碲锌镉单极型探测器研究进展[J]. 半导体光电, 2013, 34(2): 171-179. ZHANG Q S, LU Y Y, XIE Z H, et al. Progresses in the development of CdZnTe unipolar sensing detector for medical imaging[J]. Semiconductor Optoelectronics, 2013, 34(2): 171-179(in Chinese). [7] 查钢强, 王 涛, 徐亚东, 等. 新型CZT半导体X射线和γ射线探测器研制与应用展望[J]. 物理, 2013, 42(12): 862-869. ZHA G Q, WANG T, XU Y D, et al. The development of CZT semiconductor X-ray and γ-ray detectors[J]. Physics, 2013, 42(12): 862-869(in Chinese). [8] BRADFORD B H. CdZnTe arrays for nuclear medicine imaging[J]. Health Sciences Ctr/Univ of Arizona, 1996, 2859:26-28. [9] GAO X Y. Large-area CdZnTe thick film based array X-ray detector[J]. Vacuum, 2021, 183: 109855. [10] KE S Y, LIN S M, MAO D F, et al. Design of wafer-bonded structures for near room temperature Geiger-mode operation of germanium on silicon single-photon avalanche photodiode[J]. Applied Optics, 2017, 56(16): 4646-4653. [11] 苗渊浩, 王桂磊, 孔真真, 等. CVD外延锗锡及其光电探测器最新研究进展[J]. 微纳电子与智能制造, 2021, 3(1): 129-135. MIAO Y H, WANG G L, KONG Z Z, et al. Latest research progress for GeSn CVD growth and their photodetectors[J]. Micro/Nano Electronics and Intelligent Manufacturing, 2021, 3(1): 129-135(in Chinese). [12] 陈炜佳, 石洪成. 碲锌镉心脏专用SPECT的临床应用进展[J]. 国际放射医学核医学杂志, 2020, 44(6): 394-398. CHEN W J, SHI H C. The clinical progress of cadmium-zinc-telluride-based dedicated cardiac SPECT cameras[J]. International Journal of Radiation Medicine and Nuclear Medicine, 2020, 44(6): 394-398(in Chinese). [13] LUKE P N, AMMAN M, LEE J S. Factors affecting energy resolution of coplanar-grid CdZnTe detectors[J]. IEEE Transactions on Nuclear Science, 2004, 51(3): 1199-1203. [14] 范 磊, 左亮周, 陈祥磊, 等. 碲锌镉探测器中子探测性能研究[J]. 核电子学与探测技术, 2019, 39(4): 463-467. FAN L, ZUO L Z, CHEN X L, et al. Study on neutron detection performance of CdZnTe detector[J]. Nuclear Electronics & Detection Technology, 2019, 39(4): 463-467(in Chinese). [15] 张嘉泓, 张继军, 王林军, 等. 移动加热器法生长碲锌镉晶体的组分输运与界面形貌研究[J]. 人工晶体学报, 2022, 51(6): 973-985 ZHANG J H, ZHANG J J, WANG L J, et al. Study on component transport and interface morphology of CdZnTe crystals grown by traveling heater method[J]. Journal of Synthetic Crystals, 2022, 51(6): 973-985(in Chinese) [16] 折伟林, 李 乾, 刘江高, 等. 碲锌镉晶体定向研究[J]. 红外, 2022, 43(1): 1-5. SHE W L, LI Q, LIU J G, et al. Study on crystal orientation of CdZnTe[J]. Infrared, 2022, 43(1): 1-5(in Chinese). [17] 黄 哲, 伍思远, 陈柏杉, 等. 探测器级碲锌镉晶体生长及缺陷研究进展[J]. 中国有色金属学报, 2022, 32(8): 2327-2344. HUANG Z, WU S Y, CHEN B S, et al. Research progress on CdZnTe crystals growth and defects for radiation detection applications[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(8): 2327-2344(in Chinese). [18] 范 鹏. 先进核医学影像探测器的位置和能量性能优化研究[D]. 北京: 清华大学, 2016. FAN P. Studies on positioning and energy performance optimization of advanced detector for nuclear medicine imaging systems[D]. Beijing: Tsinghua University, 2016(in Chinese). [19] 傅楗强. 单极性电荷灵敏技术在碲锌镉探测器中的应用[J]. 南华大学学报(自然科学版), 2022, 36(1): 88-96. FU J Q. Single polarity charge sensing technique in CdZnTe detectors[J]. Journal of University of South China (Science and Technology), 2022, 36(1): 88-96(in Chinese). [20] 颜俊尧. 基于碲锌镉的阵列探测器关键技术研究[D]. 北京: 华北电力大学(北京), 2018. YAN J Y. Research on key technology of array detector based on CdZnTe[D]. Beijing: North China Electric Power University, 2018(in Chinese). [21] LEE M, LEE D, JO B, et al. Feasibility study of contrast enhanced digital mammography based on photon-counting detector by projection-based weighting technique: a simulation study[C]//SPIE Medical Imaging. Proc SPIE 10573, Medical Imaging 2018: Physics of Medical Imaging, Houston, Texas, USA. 2018, 10573: 1262-1272. [22] MSC A K, ZARETSKY PHD U, MOALEM I, et al. A new cardiac phantom for dynamic SPECT[J]. Journal of Nuclear Cardiology, 2021, 28(5): 2299-2309. [23] LEE Y. Preliminary evaluation of dual-head Compton camera with Si/CZT material for breast cancer detection: Monte Carlo simulation study[J]. Optik, 2020, 202: 163519. [24] 陈永仁, 赵 鹏, 俞鹏飞, 等. 室温辐射探测器用碲锌镉晶体的退火改性研究进展[J]. 材料科学与工程学报, 2021, 39(2): 342-354. CHEN Y R, ZHAO P, YU P F, et al. Research progress on annealing of CdZnTe crystals used for room temperature radiation detectors[J]. Journal of Materials Science and Engineering, 2021, 39(2): 342-354(in Chinese). [25] CUDDY-WALSH S G, WELLS R G. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera[J]. Medical Physics, 2018, 45(5): 2033-2047. [26] ITO T, MATSUSAKA Y, ONOGUCHI M, et al. Experimental evaluation of the GE NM/CT 870 CZT clinical SPECT system equipped with WEHR and MEHRS collimator[J]. Journal of Applied Clinical Medical Physics, 2021, 22(2): 165-177. [27] 席守智. Cd(Zn)Te与金属和半导体的界面研究[D]. 西安: 西北工业大学, 2018. XI S Z. Study on interfaces of Cd(Zn)Te with metal and semiconductor[D]. Xi’an: Northwestern Polytechnical University, 2018(in Chinese). [28] BEN-HAIM S, KENNEDY J, KEIDAR Z. Novel cadmium zinc telluride devices for myocardial perfusion imaging—technological aspects and clinical applications[J]. Seminars in Nuclear Medicine, 2016, 46(4): 273-285. [29] CHEN Y, CUI Y, O′CONNOR P, et al. Test of a 32-channel prototype ASIC for photon counting application[C]∥IEEE Nuclear Science Symposium Conference Record Nuclear Science Symposium, 2015, 2015: 10.1109/NSSMIC.2015.7582272. [30] SCHWANK J, BROWN D, GIRARD S, et al. 2012 special NSREC issue of the IEEE transactions on nuclear science comments by the editors[J]. IEEE Transactions on Nuclear Science, 2012, 59(6): 2632. [31] KURKOWSKA S, BIRKENFELD B, PIWOWARSKA-BILSKA H. Physical quantities useful for quality control of quantitative SPECT/CT imaging[J]. Nuclear Medicine Review Central & Eastern Europe, 2021, 24(2): 93-98. [32] FLEETWOOD D, BROWN D, GIRARD S, et al. 2013 special NSREC issue of the IEEE transactions on nuclear science comments by the editors[J]. IEEE Transactions on Nuclear Science, 2013, 60(6): 4042. [33] GLASSER F, VILLARD P, ROSTAING J P, et al. Large dynamic range 64-channel ASIC for CZT or CdTe detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2003, 509(1/2/3): 183-190. [34] XU L Y, JIE W Q, ZHA G Q, et al. Radiation damage on CdZnTe: In crystals under high dose 60Co γ-rays[J]. CrystEngComm, 2013, 15(47): 10304-10310. [35] GAO W. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 745: 57-62. [36] GAO W, LI X, LIU H, et al. Design and performance of a 16-channel radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager[J]. Microelectronics Journal, 2016, 48: 87-94. [37] ZANNONI E M. Development of a multi-detector readout circuitry for ultrahigh energy resolution single-photon imaging applications[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, 981: 164531. [38] JONES L. HEXITEC ASIC—a pixellated readout chip for CZT detectors[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 604(1/2): 34-37. [39] 曾国强, 魏世龙, 夏 源, 等. 碲锌镉探测器的数字核信号处理系统设计[J]. 核技术, 2015, 38(11): 53-60. ZENG G Q, WEI S L, XIA Y, et al. Design of digital nuclear signal processing system for CdZnTe detector[J]. Nuclear Techniques, 2015, 38(11): 53-60(in Chinese). [40] 吴 昊, 秦水介. 碲锌镉探测器低噪声读出电路的设计[J]. 电子技术与软件工程, 2017(5): 112-113. WU H, QIN S J. Design of low noise readout circuit for CdZnTe detector[J]. Electronic Technology & Software Engineering, 2017(5): 112-113(in Chinese). [41] SONG J S, LEE J M, SOHN J Y, et al. Hybrid iterative reconstruction technique for liver CT scans for image noise reduction and image quality improvement: evaluation of the optimal iterative reconstruction strengths[J]. La Radiologia Medica, 2015, 120(3): 259-267. [42] LENG S, YU L F, WANG J, et al. Noise reduction in spectral CT: reducing dose and breaking the trade-off between image noise and energy Bin selection[J]. Medical Physics, 2011, 38(9): 4946-4957. [43] LEE Y H, PARK K K, SONG H T, et al. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software[J]. European Radiology, 2012, 22(6): 1331-1340. [44] HOKAMP N G, NEUHAUS V, ABDULLAYEV N, et al. Reduction of artifacts caused by orthopedic hardware in the spine in spectral detector CT examinations using virtual monoenergetic image reconstructions and metal-artifact-reduction algorithms[J]. Skeletal Radiology, 2018, 47(2): 195-201. [45] KHAN T M, BAILEY D G, KHAN M A U, et al. Efficient hardware implementation for fingerprint image enhancement using anisotropic Gaussian filter[J]. IEEE Transactions on Image Processing, 2017, 26(5): 2116-2126. [46] SERIZEL R, MOONEN M, VAN DIJK B, et al. Low-rank approximation based multichannel Wiener filter algorithms for noise reduction with application in cochlear implants[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2014, 22(4): 785-799. [47] LIU Y K. Noise reduction by vector Median filtering[J]. GEOPHYSICS, 2013, 78(3): V79-V87. [48] CHEN Z L, ZENG Z Y, SHEN H L, et al. DN-GAN: denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images[J]. Biomedical Signal Processing and Control, 2020, 55: 101632. [49] HIGAKI T, NAKAMURA Y, TATSUGAMI F, et al. Improvement of image quality at CT and MRI using deep learning[J]. Japanese Journal of Radiology, 2019, 37(1): 73-80. [50] AREL I, ROSE D C, KARNOWSKI T P. Deep machine learning-A new frontier in artificial intelligence research[J]. IEEE Computational Intelligence Magazine, 2010, 5(4): 13-18. [51] ZUNAIR H. Sharp U-Net: depthwise convolutional network for biomedical image segmentation[J]. Computers in Biology and Medicine, 2021, 136: 104699. [52] CHEN X C, ZHOU B, XIE H D, et al. Direct and indirect strategies of deep-learning-based attenuation correction for general purpose and dedicated cardiac SPECT[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49(9): 3046-3060. [53] BUTTACAVOLI A, GERARDI G, PRINCIPATO F, et al. Energy recovery of multiple charge sharing events in room temperature semiconductor pixel detectors[J]. Sensors, 2021, 21(11): 3669. [54] ABBENE L, GERARDI G, PRINCIPATO F, et al. Dual-polarity pulse processing and analysis for charge-loss correction in cadmium-zinc-telluride pixel detectors[J]. Journal of Synchrotron Radiation, 2018, 25(4): 1078-1092. [55] COSTANTINO A, BIRD A J, SCHUFFHAM J, et al. A back-projection approach to coded aperture imaging for SPECT applications[C]//SPIE Medical Imaging. Proc SPIE 12031, Medical Imaging 2022: Physics of Medical Imaging, San Diego, California, USA. 2022, 12031: 819-828. [56] PHD J O, MSC E M, JONAS JÖGI MD P, et al. Differences in attenuation pattern in myocardial SPECT between CZT and conventional gamma cameras[J]. Journal of Nuclear Cardiology, 2019, 26(6): 1984-1991. [57] SASAKI M, KOYAMA S, KODERA Y, et al. Identification of breast tissue using the X-ray image measured with an energy-resolved cadmium telluride series detector based on photon-counting technique[C]//Proc SPIE 10718, 2018, 10718: 525-530. [58] WU D W, ZHANG Z Y, MA R Z, et al. Comparison of CZT SPECT and conventional SPECT for assessment of contractile function, mechanical synchrony and myocardial scar in patients with heart failure[J]. Journal of Nuclear Cardiology, 2019, 26(2): 443-452. [59] JOHNSON R D, BATH N K, RINKER J, et al. Introduction to the D-SPECT for technologists: workflow using a dedicated digital cardiac camera[J]. Journal of Nuclear Medicine Technology, 2020, 48(4): 297-303. [60] BEN-HAIM S, MURTHY V L, BREAULT C, et al. Quantification of myocardial perfusion reserve using dynamic SPECT imaging in humans: a feasibility study[J]. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 2013, 54(6): 873-879. [61] 张宗耀, 汪 蕾, 张海龙, 等. 利用CZT SPECT进行心脏 99Tcm-MIBI/123I-MIBG双核素显像的可行性研究[J]. 中华核医学与分子影像杂志, 2021, 41(9): 536-539. ZHANG Z Y, WANG L, ZHANG H L, et al. A feasibility study of 99Tcm-MIBI/123I -MIBG dual-isotope cardiac imaging using CZT SPECT[J]. Chinese Journal of Nuclear Medicine and Molecular Imaging, 2021, 41(9): 536-539(in Chinese). [62] 任俊灵, 张宗耀, 方 纬. 利用新型镉锌碲晶体单光子发射断层进行心肌灌注/心脏交感神经同步显像新技术的研究进展[J]. 心肺血管病杂志, 2021, 40(9): 1001-1003. REN J L, ZHANG Z Y, FANG W. Research progress of new technology of myocardial perfusion/cardiac sympathetic synchronous imaging by using new single photon emission tomography of cadmium zinc tellurium crystal[J]. Journal of Cardiovascular and Pulmonary Diseases, 2021, 40(9): 1001-1003(in Chinese). [63] ARVIDSSON I, OVERGAARD N C, DAVIDSSON A, et al. Detection of left bundle branch block and obstructive coronary artery disease from myocardial perfusion scintigraphy using deep neural networks[C]//SPIE Medical Imaging. Proc SPIE 11597, Medical Imaging 2021: Computer-Aided Diagnosis, Online Only. 2021, 11597: 154-160. [64] MELKI S, CHAWKI M B, MARIE P Y, et al. Augmented planar bone scintigraphy obtained from a whole-body SPECT recording of less than 20 min with a high-sensitivity 360° CZT camera[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2020, 47(5): 1329-1331. [65] DESMONTS C, BOUTHIBA M A, ENILORAC B, et al. Evaluation of a new multipurpose whole-body CZT-based camera: comparison with a dual-head Anger camera and first clinical images[J]. EJNMMI Physics, 2020, 7(1): 18. [66] ACHRAF B, ANTOINE V, ALAIN B, et al. Absolute quantification of bone scintigraphy for the longitudinal monitoring of vertebral fractures with a high-speed whole-body CZT-SPECT/CT system[J]. Research Square, 2022. [67] MAZESS R B, HANSON J A, PAYNE R, et al. Axial and total-body bone densitometry using a narrow-angle fan-beam[J]. Osteoporosis International, 2000, 11(2): 158-166. [68] YAMANE T, KONDO A, TAKAHASHI M, et al. Ultrafast bone scintigraphy scan for detecting bone metastasis using a CZT whole-body gamma camera[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2019, 46(8): 1672-1677. [69] HUH Y, YANG J, DIM O U, et al. Evaluation of a variable-aperture full-ring SPECT system using large-area pixelated CZT modules: a simulation study for brain SPECT applications[J]. Medical Physics, 2021, 48(5): 2301-2314. [70] BORDONNE M, CHAWKI M B, MARIE P Y, et al. High-quality brain perfusion SPECT images may be achieved with a high-speed recording using 360° CZT camera[J]. EJNMMI Physics, 2020, 7(1): 65. [71] BANI SADR A, TESTART N, TYLSKI P, et al. Reduced scan time in 123I-FP-CIT SPECT imaging using a large-field cadmium-zinc-telluride camera[J]. Clinical Nuclear Medicine, 2019, 44(7): 568-569. |
[1] | 侯越云, 刘建强, 杨蕾, 闫晋力, 张明荣, 刘晓阳. 坩埚下降法生长的大尺寸BaF2:Y闪烁晶体的闪烁性能及辐照损伤研究[J]. 人工晶体学报, 2023, 52(4): 584-589. |
[2] | 余纳, 许从艳, 李秋莲, 陈玉飞, 赵永刚, 周志能, 杨鑫, 王书荣. 少量锗的加入对铜锌锡硒薄膜及其器件性能的影响[J]. 人工晶体学报, 2023, 52(3): 460-466. |
[3] | 卢辉, 温谦, 王佳棋, 沙思淼, 王康, 孙伟东, 吴建栋, 马金福, 侯春平, 盛之林, 冯伟光. 基于ZnO电子传输层钙钛矿太阳能电池的研究进展[J]. 人工晶体学报, 2023, 52(2): 208-219. |
[4] | 李振兴, 柏伟, 王琰璋, 刘江高, 张瑛侠, 折伟林. 大尺寸非规则碲锌镉晶片双面抛光技术[J]. 人工晶体学报, 2023, 52(2): 244-251. |
[5] | 力茂林, 徐悟生, 张斌, 田东升, 尹祖荣, 张镇玺, 贾永超, 徐朝鹏. 大尺寸掺铊碘化钠晶体生长及闪烁性能[J]. 人工晶体学报, 2023, 52(1): 17-24. |
[6] | 金敏. 晶体人生丨介万奇:辐射探测半导体晶体拓荒者[J]. 人工晶体学报, 2022, 51(9-10): 1523-1526. |
[7] | 赵清华, 郑丹, 陈鹏, 王涛, 介万奇. 硒化铟材料的发展及其光电器件应用[J]. 人工晶体学报, 2022, 51(9-10): 1703-1721. |
[8] | 罗亮, 王承二, 余金秋. 掺Sr2+溴化铈晶体的生长与闪烁性能研究[J]. 人工晶体学报, 2022, 51(8): 1337-1342. |
[9] | 卢辉, 李彤, 温谦, 沙思淼, 马思敏, 薛晓洋, 王康, 盛之林, 马金福. 水杨酸的添加对全无机锡铅混合钙钛矿太阳能电池的影响[J]. 人工晶体学报, 2022, 51(8): 1387-1395. |
[10] | 张嘉泓, 张继军, 王林军, 徐哲人, 曹祥智, 卢伟. 移动加热器法生长碲锌镉晶体的组分输运与界面形貌研究[J]. 人工晶体学报, 2022, 51(6): 973-985. |
[11] | 张博, 蔺明宇, 孙淑艳, 罗新泽. SiW12、CsPbI3协同提高TiO2纳米管光电转换效率的研究[J]. 人工晶体学报, 2022, 51(6): 1034-1041. |
[12] | 牟恋希, 曾翰森, 朱肖华, 屠菊萍, 刘金龙, 陈良贤, 魏俊俊, 李成明, 欧阳晓平. CVD人造金刚石核辐射探测器研究进展[J]. 人工晶体学报, 2022, 51(5): 814-829. |
[13] | 宋志成, 杨露, 张春福, 刘大伟, 倪玉凤, 张婷, 魏凯峰. 超薄多晶硅的掺杂、钝化及光伏特性研究[J]. 人工晶体学报, 2022, 51(3): 434-440. |
[14] | 李志伟, 唐慧丽, 徐军, 刘波. 超宽禁带半导体氧化镓基X射线探测器的研究进展[J]. 人工晶体学报, 2022, 51(3): 523-537. |
[15] | 杨志胜, 柯蔚芳, 焦学纬, 余泽南, 朱华. 少铅/无铅钙钛矿太阳能电池研究进展[J]. 人工晶体学报, 2022, 51(3): 551-558. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||