[1] 李 凯, 胡文瑞. 非均匀磁场对空间浮区法晶体生长的影响[J]. 中国科学(A辑), 2001, 31(5): 466-473. LI K, HU W R. Effect of non-uniform magnetic field on crystal growth by space floating zone method[J]. Scientia Sinica (Mathematica), 2001, 31(5): 466-473(in Chinese). [2] LYUBIMOVA T P, SKURIDYN R V. The influence of vibrations on the stability of thermocapillary flow in liquid zone[J]. International Journal of Heat and Mass Transfer, 2014, 69: 191-202. [3] MINAKUCHI H, OKANO Y, DOST S. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge[J]. Journal of Crystal Growth, 2017, 468: 502-505. [4] HUANG H L, ZHU G P, ZHANG Y. Effect of Marangoni number on thermocapillary convection in a liquid bridge under microgravity[J]. International Journal of Thermal Sciences, 2017, 118: 226-235. [5] JIN C H, OKANO Y, MINAKUCHI H, et al. Numerical simulation of thermo-solutal Marangoni convection in a full floating zone with radiative heat transfer under zero gravity[J]. Journal of Crystal Growth, 2021, 570: 126204. [6] JAYAKRISHNAN R, TIWARI S. Dynamic mode decomposition of oscillatory thermo-capillary flow in curved liquid bridges of high Prandtl number liquids under microgravity[J]. Advances in Space Research, 2021, 68(10): 4252-4273. [7] VARAS R, SALGADO SÁNCHEZ P, PORTER J, et al. Thermocapillary effects during the melting in microgravity of phase change materials with a liquid bridge geometry[J]. International Journal of Heat and Mass Transfer, 2021, 178: 121586. [8] KANG Q, WU D, DUAN L, et al. Space experimental study on wave modes under instability of thermocapillary convection in liquid bridges on Tiangong-2[J]. Physics of Fluids, 2020, 32(3): 034107. [9] LE C C, LIU L J, LI Z Y. Thermocapillary instabilities in half zone liquid bridges of low Prandtl fluid with non-equal disks under microgravity[J]. Journal of Crystal Growth, 2021, 560/561: 126063. [10] RYBICKI A, FLORYAN J M. Thermocapillary effects in liquid bridges. I. Thermocapillary convection[J]. The Physics of Fluids, 1987, 30(7): 1956-1972. [11] VELTEN R, SCHWABE D, SCHARMANN A. The periodic instability of thermocapillary convection in cylindrical liquid bridges[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(2): 267-279. [12] CHEN Q S, HU W R. Influence of liquid bridge volume on instability of floating half zone convection[J]. International Journal of Heat and Mass Transfer, 1998, 41(6/7): 825-837. [13] FAN J G, LIANG R Q. Thermal-solutal capillary convection in binary mixture liquid bridge with various aspect ratios under microgravity[J]. Journal of Crystal Growth, 2022, 586: 126630. [14] KUHLMANN H C, NIENHÜSER C. Dynamic free-surface deformations in thermocapillary liquid bridges[J]. Fluid Dynamics Research, 2002, 31(2): 103-127. [15] KUHLMANN H C, NIENHÜSER C. The influence of static and dynamic free-surface deformations on the three-dimensional thermocapillary flow in liquid bridges[M]//Interfacial Fluid Dynamics and Transport Processes. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003: 213-239. [16] DOLD P, CRÖLL A, LICHTENSTEIGER M, et al. Floating zone growth of silicon in magnetic fields:Ⅳ.Rotating magnetic fields[J]. Journal of Crystal Growth, 2001, 231(1/2): 95-106. [17] WALKER J S, WITKOWSKI L M, HOUCHENS B C. Effects of a rotating magnetic field on the thermocapillary instability in the floating zone process[J]. Journal of Crystal Growth, 2003, 252(1/2/3): 413-423. [18] 袁章福, 柯家骏, 李 晶. 金属及合金的表面张力[M]. 北京: 科学出版社, 2006. YUAN Z F, KE J J, LI J. Surface tension of metals and alloys [M]. Beijing: Science Press, 2006(in Chinese). [19] 邹 勇, 朱桂平, 李 来, 等. 旋转磁场下辐射加热温度对空间浮区对流的影响[J]. 中国科学院大学学报, 2018, 35(2): 261-269. ZOU Y, ZHU G P, LI L, et al. Influences of radiation temperature on convection of space floating zone under rotating magnetic field[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2): 261-269(in Chinese). [20] LEVENSTAM M, AMBERG G. Hydrodynamical instabilities of thermocapillary flow in a half-zone[J]. Journal of Fluid Mechanics, 1995, 297: 357-372. |