[1] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489. [2] YABLONOVITCH E. How to be truly photonic[J]. Science, 2000, 289: 557- 559. [3] 沈晓鹏, 韩 奎, 李海鹏, 等. 光子晶体自准直光束偏振分束器[J]. 物理学报, 2008, 57(3): 1737-1741. SHEN X P, HAN K, LI H P, et al. Polarization beam splitter for self-collimated beams in photonic crystals[J]. Acta Physica Sinica, 2008, 57(3): 1737-1741(in Chinese). [4] 周博林, 李国辉, 吴建红, 等. 低阈值钙钛矿光子晶体激光器[J]. 激光与光电子学进展, 2022, 59(5): 49-64. ZHOU B L, LI G H, WU J H, et al. Perovskite photonic crystal laser with low threshold[J]. Laser & Optoelectronics Progress, 2022, 59(5): 49-64(in Chinese). [5] 纪 雨. 低阈值光子晶体激光器[J]. 光电子技术与信息, 2004, 17(4): 54. JI Y. Low threshold photonic crystal laser[J]. Optoelectronic Technology & Information, 2004, 17(4): 54(in Chinese). [6] 郑婉华, 王宇飞, 周文君, 等. 超低阈值横向腔光子晶体面发射激光器[J]. 红外与激光工程, 2012, 41(12): 3198-3201. ZHENG W H, WANG Y F, ZHOU W J, et al. Ultralow threshold lateral cavity photonic crystal surface-emitting laser[J]. Infrared and Laser Engineering, 2012, 41(12): 3198-3201(in Chinese). [7] 刘 薇, 孙晓红, 王 帅, 等. Sun-flower型渐变光子晶体自聚焦透镜[J]. 红外与激光工程, 2017, 46(11): 177-183. LIU W, SUN X H, WANG S, et al. Self-focusing lens in Sun-flower graded photonic crystal[J]. Infrared and Laser Engineering, 2017, 46(11): 177-183(in Chinese). [8] 陈素娟, 周崇喜, 邱传凯, 等. 三维梯度光子晶体聚焦透镜[J]. 光学学报, 2010, 30(8): 2427-2431. CHEN S J, ZHOU C X, QIU C K, et al. Focusing lens by three-dimensional graded photonic crystal[J]. Acta Optica Sinica, 2010, 30(8): 2427-2431(in Chinese). [9] MASAHIRO Y, MENAKA D Z, KENJI I, et al. Photonic-crystal lasers with high-quality narrow-divergence symmetric beams and their application to LiDAR[J]. Journal of Physics: Photonics, 2021, 3(2): 022006. [10] MOUSSA R, FOTEINOPOULOU S, ZHANG L, et al. Negative refraction and superlens behavior in a two-dimensional photonic crystal[J]. Physical Review B-Condensed Matter and Materials Physics, 2005, 71(8): 085106. [11] ANDERSON C M, GIAPIS K P. Larger two-dimensional photonic band gaps[J]. Physical Review Letters, 1996, 77(14): 2949-2952. [12] 刘晨晨, 何一凡, 蒋青云, 等. 含六方氮化硼的一维光子晶体的光学特性[J]. 量子光学学报, 2020, 26(1): 47-54. LIU C C, HE Y F, JIANG Q Y, et al. Optical properties of one-dimensional photonic crystals containing hexagonal boron nitride based[J]. Journal of Quantum Optics, 2020, 26(1): 47-54(in Chinese). [13] CHAUDHARI M K, CHAUDHARI S. Tuning photonic bands in plasma metallic photonic crystals[J]. Physics of Plasmas, 2016, 23(11): 112118. [14] WANG B, CAPPELLI M A. A tunable microwave plasma photonic crystal filter[J]. Applied Physics Letters, 2015, 107(17): 171107. [15] YIN Y, XU H, YU M Y, et al. Bandgap characteristics of one-dimensional plasma photonic crystal[J]. Physics of Plasmas, 2009, 16(10): 102103. [16] SHUKLA S, PRASAD S, SINGH V. Properties of surface modes in one dimensional plasma photonic crystals[J]. Physics of Plasmas, 2015, 22(2): 022122. [17] 刘 崧, 刘少斌, 王身云. 可调缺陷层等离子体光子晶体的滤波特性分析[J]. 光电工程, 2010, 37(2): 146-150. LIU S, LIU S B, WANG S Y. Filter property analysis of plasma photonic crystals with tunable defect[J]. Opto-Electronic Engineering, 2010, 37(2): 146-150(in Chinese). [18] SUN P P, ZHANG R Y, CHEN W Y, et al. Dynamic plasma/metal/dielectric photonic crystals in the mm-wave region: electromagnetically-active artificial material for wireless communications and sensors[J]. Applied Physics Reviews, 2019, 6(4): 041406. [19] 李 伟, 张海涛, 巩马理, 等. 等离子体光子晶体[J]. 光学技术, 2004, 30(3): 263-266. LI W, ZHANG H T, GONG M L, et al. Plasma photonics crystal[J]. Optical Technique, 2004, 30(3): 263-266(in Chinese). [20] SAKAI O, TACHIBANA K. Plasmas as metamaterials: a review[J]. Plasma Sources Science and Technology, 2012, 21(1): 013001. [21] SAKAI O, SAKAGUCHI T, TACHIBANA K. Verification of a plasma photonic crystal for microwaves of millimeter wavelength range using two-dimensional array of columnar microplasmas[J]. Applied Physics Letters, 2005, 87(24): 241505. [22] WANG B, CAPPELLI M A. A plasma photonic crystal bandgap device[J]. Applied Physics Letters, 2016, 108(16): 161101. [23] WANG B, RODRÍGUEZ J A, CAPPELLI M A. 3D woodpile structure tunable plasma photonic crystal[J]. Plasma Sources Science and Technology, 2019, 28(2): 02LT01. [24] WANG B, RODRÍGUEZ J A, MILLER O, et al. Reconfigurable plasma-dielectric hybrid photonic crystal as a platform for electromagnetic wave manipulation and computing[J]. Physics of Plasmas, 2021, 28(4): 043502. [25] MATLIS E H, CORKE T C, NEISWANDER B, et al. Electromagnetic wave transmittance control using self-organized plasma lattice metamaterial[J]. Journal of Applied Physics, 2018, 124(9): 093104. [26] TAN H Y, JIN C G, ZHUGE L J, et al. Air-like plasma frequency in one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2019, 26(5): 052107. [27] ZHANG L, OUYANG J T. Experiment and simulation on one-dimensional plasma photonic crystals[J]. Physics of Plasmas, 2014, 21(10): 103514. [28] ZHANG W D, WANG H T, ZHAO X L, et al. Bandgap-tunable device realized by ternary plasma photonic crystals arrays[J]. Physics of Plasmas, 2020, 27(6): 063508. [29] YAO J F, YUAN C X, LI H, et al. 1D photonic crystal filled with low-temperature plasma for controlling broadband microwave transmission[J]. AIP Advances, 2019, 9(6): 065302. [30] WANG R G, LI B, ZHANG T K, et al. The influence of defects in a plasma photonic crystal on the characteristics of microwave transmittance[J]. Plasma Science and Technology, 2020, 22(8): 41-48. [31] WU Z C, DONG M F, FAN W L, et al. Microwave transmittance characteristics in different uniquely designed one-dimensional plasma photonic crystals[J]. Plasma Science and Technology, 2021, 23(6): 117-124. |