[1] HONG C, ELLIOTT S J. Local feedback control of light honeycomb panels[J]. The Journal of the Acoustical Society of America, 2007, 121(1): 222-233. [2] 徐俭乐, 崔洪宇, 洪 明. 声子晶体夹层板结构的隔声性能研究[J]. 振动与冲击, 2021, 40(9): 285-291. XU J L, CUI H Y, HONG M. Sound insulation performance of phononic crystal sandwich plate structure[J]. Journal of Vibration and Shock, 2021, 40(9): 285-291(in Chinese). [3] LIU A P, ZHOU X M, HUANG G L, et al. Super-resolution imaging by resonant tunneling in anisotropic acoustic metamaterials[J]. The Journal of the Acoustical Society of America, 2012, 132(4): 2800-2806. [4] MA G C, YANG M, YANG Z Y, et al. Low-frequency narrow-band acoustic filter with large orifice[J]. Applied Physics Letters, 2013, 103(1): 011903. [5] YANG P, WU J Z, ZHAO R R, et al. Study of high frequency acoustic directional transmission model based on graphene structure[J]. AIP Advances, 2020, 10(3): 035308. [6] MALDOVAN M. Sound and heat revolutions in phononics[J]. Nature, 2013, 503(7475): 209-217. [7] ACHAOUI Y, KHELIF A, BENCHABANE S, et al. Experimental observation of locally-resonant and Bragg band gaps for surface guided waves in a phononic crystal of Pillars[J]. Physical Review B, 2011, 83(10): 104201. [8] LIU Z, ZHANG X, MAO Y, et al. Locally resonant sonic materials[J]. Science, 2000, 289(5485): 1734-1736. [9] YAO Z C, ZHAO R X, ZEGA V, et al. A metaplate for complete 3D vibration isolation[J]. European Journal of Mechanics-A/Solids, 2020, 84: 104016. [10] WANG Y F, WANG Y S. Multiple wide complete bandgaps of two-dimensional phononic crystal slabs with cross-like holes[J]. Journal of Sound and Vibration, 2013, 332(8): 2019-2037. [11] WANG Y F, WANG Y S, SU X X. Large bandgaps of two-dimensional phononic crystals with cross-like holes[J]. Journal of Applied Physics, 2011, 110(11): 113520. [12] KRUSHYNSKA A O, MINIACI M, BOSIA F, et al. Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials[J]. Extreme Mechanics Letters, 2017, 12: 30-36. [13] TIAN X Y, CHEN W J, GAO R J, et al. Merging Bragg and local resonance bandgaps in perforated elastic metamaterials with embedded spiral holes[J]. Journal of Sound and Vibration, 2021, 500: 116036. [14] CHENG Q, GUO H, YUAN T, et al. Topological design of square lattice structure for broad and multiple band gaps in low-frequency range[J]. Extreme Mechanics Letters, 2020, 35: 100632. [15] SUN P, ZHANG Z D, GUO H, et al. Topological optimization of hierarchical honeycomb acoustic metamaterials for low-frequency extreme broad band gaps[J]. Applied Acoustics, 2022, 188: 108579. [16] SEPEHRI S, JAFARI H, MASHHADI M M, et al. Study of tunable locally resonant metamaterials: effects of spider-web and snowflake hierarchies[J]. International Journal of Solids and Structures, 2020, 204/205: 81-95. [17] MINIACI M, KRUSHYNSKA A, GLIOZZI A S, et al. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials[J]. Physical Review Applied, 2018, 10(2): 024012. [18] BILLON K, ZAMPETAKIS I, SCARPA F, et al. Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials[J]. Composite Structures, 2017, 160: 1042-1050. [19] XU X C, BARNHART M V, LI X P, et al. Tailoring vibration suppression bands with hierarchical metamaterials containing local resonators[J]. Journal of Sound and Vibration, 2019, 442: 237-248. [20] BERTOLDI K, BOYCE M C, DESCHANEL S, et al. Mechanics of deformation-triggered pattern transformations and superelastic behavior in periodic elastomeric structures[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(8): 2642-2668. [21] BERTOLDI K, BOYCE M C. Mechanically triggered transformations of phononic band gaps in periodic elastomeric structures[J]. Physical Review B, 2008, 77(5): 052105. [22] BOATTI E, VASIOS N, BERTOLDI K. Origami metamaterials for tunable thermal expansion[J]. Advanced Materials, 2017, 29(26): 1700360. [23] SHIM J, WANG P, BERTOLDI K. Harnessing instability-induced pattern transformation to design tunable phononic crystals[J]. International Journal of Solids and Structures, 2015, 58: 52-61. [24] GAO N, LI J, BAO R H, et al. Harnessing uniaxial tension to tune Poisson’s ratio and wave propagation in soft porous phononic crystals: an experimental study[J]. Soft Matter, 2019, 15(14): 2921-2927. [25] GRIMA J N, MIZZI L, AZZOPARDI K M, et al. Auxetic perforated mechanical metamaterials with randomly oriented cuts[J]. Advanced Materials, 2016, 28(2): 385-389. [26] JAVID F, WANG P, SHANIAN A L, et al. Architected materials with ultra-low porosity for vibration control[J]. Advanced Materials, 2016, 28(28): 5943-5948. [27] TIAN X Y, CHEN W J, GAO R J, et al. Perforation-rotation based approach for band gap creation and enlargement in low porosity architected materials[J]. Composite Structures, 2020, 245: 112331. [28] TRAINITI G, RIMOLI J J, RUZZENE M. Wave propagation in undulated structural lattices[J]. International Journal of Solids and Structures, 2016, 97/98: 431-444. [29] FOEHR A, BILAL O R, HUBER S D, et al. Spiral-based phononic plates: from wave beaming to topological insulators[J]. Physical Review Letters, 2018, 120(20): 205501. [30] NING S W, YANG F Y, LUO C C, et al. Low-frequency tunable locally resonant band gaps in acoustic metamaterials through large deformation[J]. Extreme Mechanics Letters, 2020, 35: 100623. [31] LI J, WANG Y T, CHEN W Q, et al. Harnessing inclusions to tune post-buckling deformation and bandgaps of soft porous periodic structures[J]. Journal of Sound and Vibration, 2019, 459: 114848. [32] DUDEK K K, MARTÍNEZ J A I, ULLIAC G, et al. Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing[J]. Advanced Materials, 2022, 34(14): e2110115. [33] SHI H Y Y, TAY T E, LEE H P. Elastic wave propagation in perforated plates with tetrad elliptical structural hierarchy: numerical analysis and experimental verification[J]. Journal of Sound and Vibration, 2019, 448: 73-82. [34] JIN W C, GUO H, SUN P, et al. Numerical investigation of discrepancies between two-dimensional and three-dimensional acoustic metamaterials[J]. Frontiers in Materials, 2021, 8: 759740. |