[1] NAKAZAWA K I. Electrical and optical properties of stannite-type quaternary semiconductor thin films[J]. Japanese Journal of Applied Physics, 1988, 27(11R): 2094. [2] SCRAGG J J, ERICSON T, KUBART T, et al. Chemical insights into the instability of Cu2ZnSnS4 films during annealing[J]. Chemistry of Materials, 2011, 23(20): 4625-4633. [3] PERSSON C. Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4[J]. Journal of Applied Physics, 2010, 107(5): 053710. [4] GE J, CHU J H, JIANG J C, et al. Characteristics of in-substituted CZTS thin film and bifacial solar cell[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21118-21130. [5] CHEN S Y, WALSH A, YANG J H, et al. Compositional dependence of structural and electronic properties of Cu2ZnSn(S, Se)4 alloys for thin film solar cells[J]. Physical Review B, 2011, 83(12): 125201. [6] LI J J, HUANG Y C, HUANG J L, et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment[J]. Advanced Materials, 2020, 32(52): 2005268. [7] GONG Y C, ZHU Q, LI B Y, et al. Elemental de-mixing-induced epitaxial kesterite/CdS interface enabling 13%-efficiency kesterite solar cells[J]. Nature Energy, 2022, 7(10): 966-977. [8] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519. [9] LIU X L, FENG Y, CUI H T, et al. The Current status and future prospects of kesterite solar cells: a brief review[J]. Progress in Photovoltaics: Research and Applications, 2016, 24(6): 879-898. [10] FONOLL-RUBIO R, ANDRADE-ARVIZU J, BLANCO-PORTALS J, et al. Insights into interface and bulk defects in a high efficiency kesterite-based device[J]. Energy & Environmental Science, 2021, 14(1): 507-523. [11] KIM S, PARK J S, WALSH A. Identification of killer defects in kesterite thin-film solar cells[J]. ACS Energy Letters, 2018, 3(2): 496-500. [12] GONG Y C, QIU R C, NIU C Y, et al. Ag incorporation with controlled grain growth enables 12.5% efficient kesterite solar cell with open circuit voltage reached 64.2% Shockley-Queisser limit[J]. Advanced Functional Materials, 2021, 31(24): 2101927. [13] WANG J L, ZHOU J Z, XU X, et al. Ge bidirectional diffusion to simultaneously engineer back interface and bulk defects in the absorber for efficient CZTSSe solar cells[J]. Advanced Materials, 2022, 34(27): e2202858. [14] DU Y C, WANG S S, TIAN Q W, et al. Defect engineering in earth-abundant Cu2ZnSn(S, Se)4 photovoltaic materials via Ga3+-doping for over 12% efficient solar cells[J]. Advanced Functional Materials, 2021, 31(16): 2010325. [15] MEHMOOD F, SUN Y Q, SU W B, et al. Improved thermoelectric performance of In-doped quaternary Cu2MnSnSe4 alloys[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2022, 16(6): 2200049. [16] XIN H, VORPAHL S M, COLLORD A D, et al. Lithium-doping inverts the nanoscale electric field at the grain boundaries in Cu2ZnSn(S, Se)4 and increases photovoltaic efficiency[J]. Physical Chemistry Chemical Physics: PCCP, 2015, 17(37): 23859-23866. [17] FU J, TIAN Q W, ZHOU Z J, et al. Improving the performance of solution-processed Cu2ZnSn(S, Se)4 photovoltaic materials by Cd2+ substitution[J]. Chemistry of Materials, 2016, 28(16): 5821-5828. [18] AHN S J, JUNG S, GWAK J, et al. Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: on the discrepancies of reported band gap values[J]. Applied Physics Letters, 2010, 97(2): 021905. [19] DUAN H S, YANG W B, BOB B, et al. The role of sulfur in solution-processed Cu2ZnSn(S, Se)4 and its effect on defect properties[J]. Advanced Functional Materials, 2013, 23(11): 1466-1471. [20] COLLORD A D, HILLHOUSE H W. Germanium alloyed kesterite solar cells with low voltage deficits[J]. Chemistry of Materials, 2016, 28(7): 2067-2073. [21] ANDRADE-ARVIZU J, FONOLL-RUBIO R, SÁNCHEZ Y, et al. Rear band gap grading strategies on Sn-Ge-alloyed kesterite solar cells[J]. ACS Applied Energy Materials, 2020, 3(11): 10362-10375. [22] NOWAK D, KHONSOR T, PAREEK D, et al. Vapor-phase incorporation of Ge in CZTSe absorbers for improved stability of high-efficiency kesterite solar cells[J]. Applied Sciences, 2022, 12(3): 1376. [23] LV X, ZHU C, HAO H, et al. Improving the performance of low-cost water-based solution-synthesised Cu2ZnSn1-xGex(S, Se)4 absorber thin films by germanium doping[J]. Ceramics International, 2020, 46(16): 25638-25645. [24] KIM S, KIM K M, TAMPO H, et al. Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%[J]. Solar Energy Materials and Solar Cells, 2016, 144: 488-492. [25] GIRALDO S, NEUSCHITZER M, LÓPEZ-MARINO S, et al. Large performance improvement in Cu2ZnSnSe4 based solar cells by surface engineering with a nanometric Ge layer[C]//2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC). June 14-19, 2015, New Orleans, LA, USA. IEEE, 2015: 1-5. [26] THERSLEFF T, GIRALDO S, NEUSCHITZER M,et al. Chemically and morphologically distinct grain boundaries in Ge-doped Cu2ZnSnSe4 solar cells revealed with STEM-EELS[J]. Materials & Design, 2017, 122: 102-109. [27] GUEN L, GLAUNSINGER W S. Electrical, magnetic, and EPR studies of the quaternary chalcogenides Cu2AIIBIVX4 prepared by iodine transport[J]. Journal of Solid State Chemistry, 1980, 35(1): 10-21. [28] ROMANYUK Y E, HAASS S G, GIRALDO S, et al. Doping and alloying of kesterites[J]. Journal of Physics: Energy, 2019, 1(4): 044004. [29] SARAGIH A D, KUO D H. Germanium substitution effect on the property and performance of Cu2ZnSnSe4 thin films and its solar cell having absorber layer made by sputtering with single metallic target plus selenization[J]. Materials Science and Engineering: B, 2019, 250: 114437. |