[1] MISHRA U, SHEN L, KAZIOR T, et al. GaN-based RF power devices and amplifiers[J]. Proceedings of the IEEE, 2008, 96: 287-305. [2] PENGELLY R S, WOOD S M, MILLIGAN J W, et al. A review of GaN on SiC high electron-mobility power transistors and MMICs[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(6): 1764-1783. [3] HAO Y, MA X H, MI M H, et al. Research on GaN-Based RF devices: high-frequency gate structure design, submicrometer-length gate fabrication, suppressed SCE, low parasitic resistance, minimized current collapse, and lower gate leakage[J]. IEEE Microwave Magazine, 2021, 22(4): 34-48. [4] PEDRO J C, NUNES L C, CABRAL P M. Soft compression and the origins of nonlinear behavior of GaN HEMTs[C]. 44th European Microwave Conference, 2014: 1297-1300. [5] LEE D, LIU Z H, PALACIOS T. GaN high electron mobility transistors for sub-millimeter wave applications[J]. Japanese Journal of Applied Physics, 2014, 53(10): 100212. [6] LIU Y, TREW R, BILBRO G, et al. Linearity limitations of AlGaN/GaN HFET’s[C]. IEEE Annual Wireless and Microwave Technology Conference, 2006, Clearwater Beach, FL, USA. [7] JENA D, RAJAN S. Effect of optical phonon scattering on the performance of GaN transistors[EB/OL]. 2010: arXiv: 1008.1154. https://arxiv.org/abs/1008.1154. [8] KHURGIN J, BAJAJ S, RAJAN S. Amplified spontaneous emission of phonons as a likely mechanism for density-dependent velocity saturation in GaN transistors[J]. Applied Physics Express, 2016, 9(9): 94101.1. [9] PALACIOS T, RAJAN S, HEIKMAN S, et al. Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs[J]. IEEE Transactions on Electron Devices, 2005, 52(10): 2117-2123. [10] TREW R, LIU Y Y, BILBRO L, et al. Nonlinear source resistance in high-voltage microwave AlGaN/GaN HFETs[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(5): 2061-2067. [11] XIA J, ZHU X W, ZHANG L, et al. High-efficiency GaN Doherty power amplifier for 100-MHz LTE-advanced application based on modified load modulation network[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(8): 2911-2921. [12] CHO Y, KANG D, KIM J, et al. A dual power-mode multi-band power amplifier with envelope tracking for handset applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(4): 1608-1619. [13] ZHANG K, KONG Y C, ZHU G R, et al. High-linearity AlGaN/GaN FinFETs for microwave power applications[J]. IEEE Electron Device Letters, 2017, 38(5): 615-618. [14] CHINI A, BUTTARI D, COFFIE R, et al. Power and linearity characteristics of field-plated recessed-gate AlGaN-GaN HEMTs[J]. IEEE Electron Device Letters, 2004, 25(5): 229-231. [15] SOHEL S H, XIE A, BEAM E, et al. X-band power and linearity performance of compositionally graded AlGaN channel transistors[J]. IEEE Electron Device Letters, 2018, 39(12): 1884-1887. [16] ZHANG Y C, WANG Z Z, GUO R, et al. High performance InGaN double channel high electron mobility transistors with strong coupling effect between the channels[J]. Applied Physics Letters, 2018, 113(23): 233503. [17] LIU J, ZHOU Y G, CHU R M, et al. Highly linear Al0.3Ga0.7N-Al0.05Ga0.95N-GaN composite-channel HEMTs[J]. IEEE Electron Device Letters, 2005, 26(3): 145-147. [18] CHOI P, RADHAKRISHNA U, BOON C C, et al. Linearity enhancement of a fully integrated 6-GHz GaN power amplifier[J]. IEEE Microwave and Wireless Components Letters, 2017, 27(10): 927-929. [19] 李鹏涛, 王 鑫, 罗 贤, 等. AlxGa1-xN氮化物结构和热力学性质的第一性原理研究[J]. 人工晶体学报, 2021, 50(12): 2212-2218. LI P T, WANG X, LUO X, et al. First-principle study on structure and thermodynamics properties of AlxGa1-xN nitride[J]. Journal of Synthetic Crystals, 2021, 50(12): 2212-2218 (in Chinese). [20] 开翠红, 王 蓉, 杨德仁, 等. 基于碳化硅衬底的宽禁带半导体外延[J]. 人工晶体学报, 2021, 50(9): 1780-1795. KAI C H, WANG R, YANG D R, et al. Epitaxy of wide bandgap semiconductors on silicon carbide substrate[J]. Journal of Synthetic Crystals, 2021, 50(9): 1780-1795 (in Chinese). [21] BENYAHYA N, MAZARI H, BENSEDDIK N, et al. Characterization and comparison between Ig(Vgs) structures HEMT AlInN/GaN and AlGaN/GaN[J]. Optical and Quantum Electronics, 2014, 46(1): 209-219. |