[1] CASADY J B, JOHNSON R W. Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review[J]. Solid-State Electronics, 1996, 39(10): 1409-1422. [2] WEITZEL C E, PALMOUR J W, CARTER C H, et al. Silicon carbide high-power devices[J]. IEEE Transactions on Electron Devices, 1996, 43(10): 1732-1741. [3] KIMOTO T. Material science and device physics in SiC technology for high-voltage power devices[J]. Japanese Journal of Applied Physics, 2015, 54(4): 40103.1. [4] TSUNENOBU K, HEIJI W. Defect engineering in SiC technology for high-voltage power devices[J]. Applied Physics Express, 2020, 13(12): 120101-. [5] SKOWRONSKI M, HA S. Degradation of hexagonal silicon-carbide-based bipolar devices[J]. Journal of Applied Physics, 2006, 99(1): 011101. [6] SICHE D, KLIMM D, HÖLZEL T, et al. Reproducible defect etching of SiC single crystals[J]. Journal of Crystal Growth, 2004, 270(1/2): 1-6. [7] KALLINGER B, POLSTER S, BERWIAN P, et al. Threading dislocations in n- and p-type 4H-SiC material analyzed by etching and synchrotron X-ray topography[J]. Journal of Crystal Growth, 2011, 314(1): 21-29. [8] HASSAN J, HENRY A, MCNALLY P J, et al. Characterization of the carrot defect in 4H-SiC epitaxial layers[J]. Journal of Crystal Growth, 2010, 312(11): 1828-1837. [9] GAO Y, ZHANG Z H, BONDOKOV R, et al. The effect of doping concentration and conductivity type on preferential etching of 4H-SiC by molten KOH[C]//Proceedings of the Symposium on Silicon Carbide-Materials, Processing and Devices held at the 2004 MRS Spring Meeting, San Francisco, CA, F Apr 14-15, 2004. [10] YAKIMOVA R, HYLÉN A L, TUOMINEN M, et al. Preferential etching of SiC crystals[J]. Diamond and Related Materials, 1997, 6(10): 1456-1458. [11] SAKWE S A, MÜLLER R, WELLMANN P J. Optimization of KOH etching parameters for quantitative defect recognition in n- and p-type doped SiC[J]. Journal of Crystal Growth, 2006, 289(2): 520-526. [12] SYVÄJÄRVI M, YAKIMOVA R, HYLÉN A L, et al. Anisotropy of dissolution and defect revealing on SiC surfaces[J]. Journal of Physics: Condensed Matter, 1999, 11(49): 10041-10046. [13] ISHIKAWA Y, SUGAWARA Y, SAITOH H, et al. Characterization of surface defects of highly N-doped 4H-SiC substrates that produce dislocations in the epitaxial layer[J]. Materials Science Forum, 2010, 907(645/646/647/648): 351-354. [14] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Molten KOH etching with Na2O2 additive for dislocation revelation in 4H-SiC epilayers and substrates[J]. Japanese Journal of Applied Physics, 2011, 50(7): 1-7. [15] YAO Y Z, ISHIKAWA Y, SUGAWARA Y, et al. Correlation between etch pits formed by molten KOH+Na2O2 etching and dislocation types in heavily doped n+-4H-SiC studied by X-ray topography[J]. Journal of Crystal Growth, 2013, 364: 7-10. [16] WEYHER J L, LAZAR S, BORYSIUK J, et al. Defect-selective etching of SiC[J]. Phys Status Solidi A-Appl Mat, 2005, 202(4): 578-583. [17] NA M, KANG I H, MOON J H, et al. Role of the oxidizing agent in the etching of 4H-SiC substrates with molten KOH[J]. Journal of the Korean Physical Society, 2016, 69(11): 1677-1682. [18] HA S, MIESZKOWSKI P, SKOWRONSKI M, et al. Dislocation conversion in 4H silicon carbide epitaxy[J]. Journal of Crystal Growth, 2002, 244(3/4): 257-266. [19] WU P, XU X, ZWIEBACK I, et al. Study of etching processes for SiC defect analysis[C]//2016 European Conference on Silicon Carbide & Related Materials (ECSCRM). September 25-29, 2016, Halkidiki, Greece. IEEE, 2017: 1. [20] CUI Y X, HU X B, XIE X J, et al. Threading dislocation classification for 4H-SiC substrates using the KOH etching method[J]. CrystEngComm, 2018, 20(7): 978-982. |