[1] GRAUINYTĖ M, BOTTI S, MARQUES M A L, et al. Computational acceleration of prospective dopant discovery in cuprous iodide[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(35): 18839-18849. [2] KOZHUMMAL R, YANG Y, GÜDER F, et al. Antisolvent crystallization approach to construction of CuI superstructures with defined geometries[J]. ACS Nano, 2013, 7(3): 2820-2828. [3] LIN G C, ZHAO F Z, ZHAO Y, et al. Luminescence properties and mechanisms of CuI thin films fabricated by vapor iodization of copper films[J]. Materials, 2016, 9(12): 990. [4] YU W, BENNDORF G, JIANG Y, et al. Control of optical absorption and emission of sputtered copper iodide thin films[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2020, 15(1): 2000431. [5] CHINNAKUTTI K K, PANNEERSELVAM V, GOVINDARAJAN D, et al. Optoelectronic and electrochemical behaviour of γ-CuI thin films prepared by solid iodination process[J]. Progress in Natural Science: Materials International, 2019, 29(5): 533-540. [6] LEE M, YOUN Y, JEONG J K, et al. Origin of p-type conduction in amorphous CuI: a first-principles investigation[J]. Physica Status Solidi (b), 2020, 257(9): 2000218. [7] 于洪涛, 全 燮. 纳米异质结光催化材料在环境污染控制领域的研究进展[J]. 化学进展, 2009, 21(S1): 406-419. YU H T, QUAN X. Nano-heterojunction photocatalytic materials in environmental pollution controlling[J]. Progress in Chemistry, 2009, 21(S1): 406-419 (in Chinese). [8] TONG F, ZHU Z C, LIU B, et al. Enhanced luminescence of CuI thin film scintillator by reducing Fresnel reflection[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 707: 120-122. [9] MURMU P P, KARTHIK V, LIU Z H, et al. Influence of carrier density and energy barrier scattering on a high seebeck coefficient and power factor in transparent thermoelectric copper iodide[J]. ACS Applied Energy Materials, 2020, 3(10): 10037-10044. [10] MADUSANKA H T D S, HERATH H M A M C, FERNANDO C A N. High photoresponse performance of self-powered n-Cu2O/p-CuI heterojunction based UV-visible photodetector[J]. Sensors and Actuators A: Physical, 2019, 296: 61-69. [11] ZHANG L, LEI Y, YANG X G, et al. A facile room temperature iodination route to in situ fabrication of patterned copper-iodide/silicon quasi-bulk-heterojunction thin films for photovoltaic application[J]. Dalton Transactions, 2015, 44(12): 5848-5853. [12] CROVETTO A, HEMPEL H, RUSU M, et al. Water adsorption enhances electrical conductivity in transparent p-type CuI[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 48741-48747. [13] YANG C, KNEIΒ M, LORENZ M, et al. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(46): 12929-12933. [14] KIM H J, SHIM H S, KIM J W, et al. CuI interlayers in lead phthalocyanine thin films enhance near-infrared light absorption[J]. Applied Physics Letters, 2012, 100(26): 263303. [15] STORM P, GIERTH S, SELLE S, et al. Evidence for oxygen being a dominant shallow acceptor in p-type CuI[J]. APL Materials, 2021, 9(5): 051101. [16] BAEK S D, KWON D K, KIM Y C, et al. Violet light-emitting diodes based on p-CuI thin film/n-MgZnO quantum dot heterojunction[J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6037-6047. [17] HEASLEY R, DAVIS L M, CHUA D, et al. Vapor deposition of transparent, p-type cuprous iodide via a two-step conversion process[J]. ACS Applied Energy Materials, 2018, 1(12): 6953-6963. [18] GRUNDMANN M. Karl Bädeker (1877-1914) and the discovery of transparent conductive materials[J]. Physica Status Solidi (a), 2015, 212(7): 1409-1426. [19] SCHEIN F L, VON WENCKSTERN H, GRUNDMANN M. Transparent p-CuI/n-ZnO heterojunction diodes[J]. Applied Physics Letters, 2013, 102(9): 092109. [20] LEE J H, LEE W J, KIM T H, et al. Transparent p-CuI/n-BaSnO3-δ heterojunctions with a high rectification ratio[J]. Journal of Physics: Condensed Matter, 2017, 29(38): 384004. [21] YAMADA N, INO R, NINOMIYA Y. Truly transparent p-type γ-CuI thin films with high hole mobility[J]. Chemistry of Materials, 2016, 28(14): 4971-4981. [22] COTA-LEAL M, CABRERA-GERMAN D, SOTELO-LERMA M, et al. Highly-transparent and conductive CuI films obtained by a redirected low-cost and electroless two-step route: chemical solution deposition of CuS2 and subsequent iodination[J]. Materials Science in Semiconductor Processing, 2019, 95: 59-67. [23] GENG F J, YANG L, DAI B, et al. Enhanced transmittance and mobility of p-type copper iodide thin films prepared at room temperature via a layer-by-layer approach[J]. Surface and Coatings Technology, 2019, 361: 396-402. [24] YAO J H, ELDER K R, GUO H, et al. Theory and simulation of Ostwald ripening[J]. Physical Review B, Condensed Matter, 1993, 47(21): 14110-14125. [25] KNEIß M, YANG C, BARZOLA-QUIQUIA J, et al. Suppression of grain boundary scattering in multifunctional p-type transparent γ-CuI thin films due to interface tunneling currents[J]. Advanced Materials Interfaces, 2018, 5(6): 1701411. [26] 李振山, 蔡宁生. 气固反应原理[M]. 北京: 科学出版社, 2020. Li Z S, Cai N S. Principles of gas solid reaction[M]. Beijing: Science Press, 2020 (in Chinese). [27] ZHU B L, ZHAO X Z. Transparent conductive CuI thin films prepared by pulsed laser deposition[J]. Physica Status Solidi (a), 2011, 208(1): 91-96. |